A discontinuous Galerkin method for non-linear electro-thermo-mechanical problems: application to shape memory composite materials

Meccanica - Tập 53 - Trang 1357-1401 - 2017
Lina Homsi1, Ludovic Noels1
1Department of Aerospace and Mechanical Engineering, Computational and Multiscale Mechanics of Materials (CM3), University of Liège, Quartier Polytech 1, Liège, Belgium

Tóm tắt

A coupled electro-thermo-mechanical discontinuous Galerkin (DG) method is developed considering the non-linear interactions of electrical, thermal, and mechanical fields. In order to develop a stable discontinuous Galerkin formulation the governing equations are expressed in terms of energetically conjugated fields gradients and fluxes. Moreover, the DG method is formulated in finite deformations and finite fields variations. The multi-physics DG formulation is shown to satisfy the consistency condition, and the uniqueness and optimal convergence rate properties are derived under the assumption of small deformation. First the numerical properties are verified on a simple numerical example, and then the framework is applied to simulate the response of smart composite materials in which the shape memory effect of the matrix is triggered by the Joule effect.

Tài liệu tham khảo

Ainsworth M, Kay D (1999) The approximation theory for the p-version finite element method and application to non-linear elliptic pdes. Numer Math 82(3):351–388 Ainsworth M, Kay D (2000) Approximation theory for the hp-version finite element method and application to the non-linear laplacian. Applied numerical mathematics 34(4):329–344 Amestoy P, Duff I, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184(2):501–520. doi:10.1016/S0045-7825(99)00242-X Anand L, On H (1979) Hencky’s approximate strain-energy function for moderate deformations. J Appl Mech 46:78–82. doi:10.1115/1.3424532 Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J Numer Anal 39(5):1749–1779 Arnold DN, Brezzi F, Marini LD (2005) A family of discontinuous galerkin finite elements for the reissner-mindlin plate. J Sci Comput 22–23:25–45 Babuška I, Suri M (1987) The \(hp\) version of the finite element method with quasiuniform meshes. RAIRO-Modélisation mathématique et analyse numérique 21(2):199–238 Becker G, Noels L (2013) A full-discontinuous galerkin formulation of nonlinear kirchhofflove shells: elasto-plastic finite deformations, parallel computation, and fracture applications. Int J Numer Meth Eng 93(1):80–117. doi:10.1002/nme.4381 Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28 Bonet J, Burton A (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput Methods Appl Mech Eng 162(1):151–164 Chung DD (1994) CHAPTER 4—properties of carbon fibers. In: Chung DD (ed) Carbon fiber composites. Butterworth-Heinemann, Boston, pp. 65–78. doi:10.1016/B978-0-08-050073-7.50008-7. URL www.sciencedirect.com/science/article/pii/B9780080500737500087 Ciarlet P (2002) Conforming finite element methods for second-order problems, chapter 3, pp. 110–173. SIAM. doi:10.1137/1.9780898719208.ch3 Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. Springer, New York Culebras M, Gómez CM, Cantarero A (2014) Review on polymers for thermoelectric applications. Materials 7(9):6701–6732 Douglas J, Dupont T (1976) Interior penalty procedures for elliptic and parabolic Galerkin methods. Springer, Berlin, pp 207–216. doi:10.1007/BFb0120591 Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002) Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput Methods Appl Mech Eng 191(34):3669–3750 Fabré M, Binst J, Bocsan I, De Smet C, Ivens J (2012) Heating shape memory polymers with alternative ways: microwave and direct electrical heating. In: 15th European Conference on composite materials. University of Padova, pp. 1–8 Ferreira ADBL, Nóvoa PRO, Torres Marques A (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35. doi:10.1016/j.compstruct.2016.01.028. Smart composites and composite structures In honour of the 70th anniversary of Professor Carlos Alberto Mota Soares Georgoulis EH (2003) Discontinuous Galerkin methods on shape-regular and anisotropic meshes. University of Oxford D. Phil, Thesis Geuzaine C, Remacle JF (2009) Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331. doi:10.1002/nme.2579 Gilbarg D, Trudinger NS (2015) Elliptic partial differential equations of second order. Springer, New York Gudi T (2006) Discontinuous Galerkin methods for nonlinear elliptic problems. Ph.D. thesis, Indian Institute of Technology, Bombay Gudi T, Nataraj N, Pani AK (2008) hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer Math 109(2):233–268 Hansbo P, Larson MG (2002) A discontinuous Galerkin method for the plate equation. Calcolo 39(1):41–59 Hansbo P, Larson MG (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191(17–18):1895–1908 Homsi L (2017) Development of non-linear electro-thermo-mechanical discontinuous Galerkin formulations. Ph.D. thesis, University of Liège, Belgium Homsi L, Geuzaine C, Noels L (2017) A coupled electro-thermal discontinuous Galerkin method. J Comput Phys 348:231–258 Houston P, Robson J, Süli E (2005) Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J Numer Anal 25(4):726–749 Huang W, Yang B, An L, Li C, Chan Y (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86(11):114,105 Issi JP (2003) Electronic and thermal properties of carbon fibers. World of Carbon. CRC Press, Boca Raton, pp 207–216. doi:10.1201/9780203166789.ch3 Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392 Kaufmann P, Martin S, Botsch M, Gross M (2009) Flexible simulation of deformable models using discontinuous galerkin fem. Graphical Models 71(4):153–167. doi:10.1016/j.gmod.2009.02.002. http://www.sciencedirect.com/science/article/pii/S15240703090%00125. Special Issue of ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2008 Keith JM, Janda NB, King JA, Perger WF, Oxby TJ (2005) Shielding effectiveness density theory for carbon fiber/nylon 6, 6 composites. Polym Compos 26(5):671–678 Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492 Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434(7035):879–882 Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135 Liang C, Rogers C, Malafeew E (1997) Investigation of shape memory polymers and their hybrid composites. J Intell Mater Syst Struct 8(4):380–386 Liu L (2012) A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites. Int J Eng Sci 55:35–53 Liu R, Wheeler M, Dawson C (2009) A three-dimensional nodal-based implementation of a family of discontinuous galerkin methods for elasticity problems. Comput Struct 87(3–4):141–150. doi:10.1016/j.compstruc.2008.11.009 Liu R, Wheeler M, Dawson C, Dean R (2009) Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput Methods Appl Mech Eng 198(9–12):912–919. doi:10.1016/j.cma.2008.11.012 Lu H, Liu Y, Leng J, Du S (2010) Qualitative separation of the physical swelling effect on the recovery behavior of shape memory polymer. Eur Polymer J 46(9):1908–1914 Mahan GD (2000) Density variations in thermoelectrics. J Appl Phys 87(10):7326–7332 McBride A, Reddy B (2009) A discontinuous Galerkin formulation of a model of gradient plasticity at finite strains. Comput Methods Appl Mech Eng 198(21–26):1805–1820. doi:10.1016/j.cma.2008.12.034. Advances in Simulation-Based Engineering Sciences Honoring J. Tinsley Oden Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221 Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672 Miehe C (1994) Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int J Numer Meth Eng 37(12):1981–2004 Muliana A, Li KA (2010) Time-dependent response of active composites with thermal, electrical, and mechanical coupling effect. Int J Eng Sci 48(11):1481–1497 Noels L (2009) A discontinuous galerkin formulation of non-linear Kirchhoff–Love shells. Int J Numer Meth Eng 78(3):296–323 Noels L, Radovitzky R (2006) A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Meth Eng 68(1):64–97 Noels L, Radovitzky R (2008) An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Int J Numer Meth Eng 74(9):1393–1420 Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polymer J 80:268–294 Prudhomme S, Pascal F, Oden J, Romkes A (2000) Review of a priori error estimation for discontinuous Galerkin methods. Technical report, TICAM, UTexas Reed W, Hill T (1973) Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory. http://www.osti.gov/scitech/servlets/purl/4491151 Romkes A, Prudhomme S, Oden J (2003) A priori error analyses of a stabilized discontinuous Galerkin method. Comput Math Appl 46(8):1289–1311 Rothe S, Schmidt JH, Hartmann S (2015) Analytical and numerical treatment of electro-thermo-mechanical coupling. Arch Appl Mech 85(9–10):1245–1264 Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172 Spencer A (1982) The formulation of constitutive equations for anisotropic solids. Nijhoff, Amsterdam, pp. 3–26 Spencer AJM (1986) Modelling of finite deformations of anisotropic materials. In: John G, Joseph Z, Siavouche N-N (eds) Large deformations of solids: physical basis and mathematical modelling. Springer, Dordrecht, pp 41–52 Srivastava V, Chester SA, Anand L (2010) Thermally actuated shape-memory polymers: experiments, theory, and numerical simulations. J Mech Phys Solids 58(8):1100–1124 Sun S, Wheeler MF (2005) Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl Numer Math 52(2):273–298 Ten Eyck A, Celiker F, Lew A (2008) Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput Methods Appl Mech Eng 197(45–48):3605–3622. doi:10.1016/j.cma.2008.02.020 Ten Eyck A, Lew A (2006) Discontinuous Galerkin methods for non-linear elasticity. Int J Numer Meth Eng 67(9):1204–1243. doi:10.1002/nme.1667 Truster TJ, Chen P, Masud A (2015) Finite strain primal interface formulation with consistently evolving stabilization. Int J Numer Meth Eng 102(3–4):278–315. doi:10.1002/nme.4763 Truster TJ, Chen P, Masud A (2015) On the algorithmic and implementational aspects of a discontinuous Galerkin method at finite strains. Comput Math Appl 70(6):1266–1289. doi:10.1016/j.camwa.2015.06.035. http://www.sciencedirect.com/science/article/pii/S08981221150%03211 Vilčáková J, Sáha P, Quadrat O (2002) Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur Polymer J 38(12):2343–2347 Wells GN, Dung NT (2007) AC 0 discontinuous Galerkin formulation for Kirchhoff plates. Comput Methods Appl Mech Eng 196(35–36):3370–3380 Wells GN, Garikipati K, Molari L (2004) A discontinuous Galerkin formulation for a strain gradient-dependent damage model. Comput Methods Appl Mech Eng 193(33–35):3633–3645 Wen S, Chung D (1999) Seebeck effect in carbon fiber-reinforced cement. Cem Concr Res 29(12):1989–1993 Wheeler MF (1978) An elliptic collocation-finite element method with interior penalties. SIAM J Numer Anal 15(1):152–161 Wu L, Tjahjanto D, Becker G, Makradi A, Jérusalem A, Noels L (2013) A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous galerkin/cohesive zone method. Eng Fract Mech 104:162–183 Yadav S, Pani A, Park EJ (2013) Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations. Math Comput 82(283):1297–1335 Yang Y, Xie S, Ma F, Li J (2012) On the effective thermoelectric properties of layered heterogeneous medium. J Appl Phys 111(1):013,510 Zheng XP, Liu DH, Liu Y (2011) Thermoelastic coupling problems caused by thermal contact resistance: a discontinuous Galerkin finite element approach. Sci China Phys Mech Astron 54(4):666–674 Zhupanska OI, Sierakowski RL (2011) Electro-thermo-mechanical coupling in carbon fiber polymer matrix composites. Acta Mech 218(3–4):319–332