A direct solver with O(N) complexity for integral equations on one-dimensional domains
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atkinson K E. The Numerical Solution of Integral Equations of the Second Kind. Cambridge: Cambridge University Press, 1997
Barnes J, Hut P. A hierarchical O(n log n) force-calculation algorithm. Nature, 1986, 324(4): 446–449
Beylkin G, Coifman R, Rokhlin V. Wavelets in numerical analysis. In: Wavelets and Their Applications. Boston: Jones and Bartlett, 1992, 181–210
Börm S. Efficient Numerical Methods for Non-local Operators: ℋ 2-matrix Compression, Algorithms and Analysis. European Mathematics Society, 2010
Bremer J, Rokhlin V. Efficient discretization of Laplace boundary integral equations on polygonal domains. J Comput Phys, 2010, 229: 2507–2525
Chandrasekaran S, Gu M. A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices. Numer Math, 2004, 96(4): 723–731
Chandrasekaran S, Gu M, Li X S, Xia J. Superfast multifrontal method for large structured linear systems of equations. SIAM J Matrix Anal Appl, 2009, 31: 1382–1411
Chandrasekaran S, Gu M, Li X S, Xia J. Fast algorithms for hierarchically semiseparable matrices. Numer Linear Algebra Appl, 2010, 17: 953–976
Cheng H, Gimbutas Z, Martinsson P G, Rokhlin V. On the compression of low rank matrices. SIAM J Sci Comput, 2005, 26(4): 1389–1404
Gillman A. Fast direct solvers for elliptic partial differential equations. Ph D Thesis. Boulder: University of Colorado at Boulder, 2011
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: Johns Hopkins University Press, 1996
Grasedyck L, Kriemann R, Le Borne S. Domain decomposition based H-LU preconditioning. Numer Math, 2009, 112: 565–600
Greengard L, Gueyffier D, Martinsson P G, Rokhlin V. Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer, 2009, 18: 243–275
Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys, 1987, 73(2): 325–348
Gu M, Eisenstat S C. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J Sci Comput, 1996, 17(4): 848–869
Hackbusch W. The panel clustering technique for the boundary element method (invited contribution). In: Boundary Elements IX, Vol 1 (Stuttgart, 1987), Comput Mech Southampton. 1987, 463–474
Hackbusch W. A sparse matrix arithmetic based on H-matrices; Part I: Introduction to H-matrices. Computing, 1999, 62: 89–108
Helsing J, Ojala R. Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J Comput Phys, 2008, 227: 8820–8840
Kapur S, Rokhlin V. High-order corrected trapezoidal quadrature rules for singular functions. SIAM J Numer Anal, 1997, 34: 1331–1356
Martinsson P G. A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix. SIAM J Matrix Anal Appl, 2011, 32(4): 1251–1274
Martinsson P G, Rokhlin V. A fast direct solver for boundary integral equations in two dimensions. J Comp Phys, 2005, 205(1): 1–23
Michielssen E, Boag A, Chew W C. Scattering from elongated objects: direct solution in O(N log2 N) operations. IEE Proc Microw Antennas Propag, 1996, 143(4): 277–283
O’Donnell S T, Rokhlin V. A fast algorithm for the numerical evaluation of conformal mappings. SIAM J Sci Stat Comput, 1989, 10: 475–487
Schmitz P, Ying L. A fast direct solver for elliptic problems on general meshes in 2d. 2010
Sheng Z, Dewilde P, Chandrasekaran S. Algorithms to solve hierarchically semiseparable systems. In: System Theory, the Schur Algorithm and Multidimensional Analysis. Oper Theory Adv Appl, Vol 176. Basel: Birkhäuser, 2007, 255–294
Starr P, Rokhlin V. On the numerical solution of two-point boundary value problems. II. Comm Pure Appl Math, 1994, 47(8): 1117–1159
Xiao H, Rokhlin V, Yarvin N. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems, 2001, 17(4): 805–838
Young P, Hao S, Martinsson P G. A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces. J Comput Phys (to appear)