Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp đo nhiệt vi sai (DSC) để đánh giá chất lượng rác thải polyethylene terephthalate (PET) cho việc tái chế vật lý: một nghiên cứu thử nghiệm bằng chứng
Tóm tắt
Tái chế vật lý nhựa là một trong những phương pháp quan trọng nhất trong nền kinh tế tuần hoàn. Hiệu quả của việc tái chế bị ảnh hưởng bởi nhiều yếu tố bao gồm số vòng tái chế, thành phần nhựa, điều chỉnh hóa học, phụ gia và các yếu tố khác. Tuy nhiên, hiện nay không có phương pháp nào cho phép phân biệt chất lượng của nhựa để tái chế. Trong nghiên cứu này, chúng tôi giải quyết vấn đề này và đề xuất một phương pháp mới dựa trên sự tương quan chỉ của các tính chất nhiệt vật lý của rác thải polyethylene terephthalate (PET) thu được bằng cách sử dụng phương pháp nhiệt vi sai quét (DSC) trong quá trình gia nhiệt và làm lạnh lặp lại. Sự kết hợp giữa kết quả đo nhiệt vi sai quét và các phương pháp thống kê tiên tiến cho phép tách biệt 76 mẫu PET thành sáu nhóm dựa trên nguồn gốc, điều chỉnh hóa học, sự phân hủy và khả năng tái chế. Phân tích phân biệt đã cho phép đề xuất một mô hình sử dụng để phân biệt một tổ hợp các nhiệt độ và enthalpy của quá trình nóng chảy và kết tinh. Cách tiếp cận này minh họa rằng các tính chất nhiệt vật lý, có thể thu được bằng cách sử dụng một thí nghiệm DSC duy nhất, có thể được sử dụng để phân biệt các loại polymer khác nhau về nguồn gốc và chất lượng.
Từ khóa
#tái chế vật lý #polyethylene terephthalate #DSC #nhiệt vi sai quét #phân tích phân biệt #tính chất nhiệt vật lý #kinh tế tuần hoànTài liệu tham khảo
PlasticsEurope. Plastics - the facts 2014/2015. An analysis of European plastics production, demand and waste data, Association of Plastics Manufacturers. Plastics - the Facts 2021. 2015.
Welle F. Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recycl. 2011;11:865–75.
ILSI Europe Packaging Materials Task Force. PACKAGING MATERIALS 1. POLYETHYLENE TEREPHTHALATE (PET) FOR FOOD PACKAGING APPLICATIONS Prepared under the responsibility of the ILSI Europe Packaging Material Task Force. 2000.
Webb HK, Arnott J, Crawford RJ, Ivanova EP. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel). 2013;5:1–18.
Dimitrov N, Kratofil Krehula L, Ptiček Siročić A, Hrnjak-Murgić Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab. 2013;98:972–9.
Sinha V, Patel MR, Patel JV. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8–25.
Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58.
De Winter W, Mariën A, Heirbaut W, Verheijen J. Recycling of poly(ethylene terephthalate) (PET). In: Makromolekulare chemie macromolecular symposia. 1st ed. 1992;57:253–63.
EUROPEAN PARLIAMENT AND COUNCIL DIRECTIVE 94/62/EC of 20 December 1994 on packaging and packaging waste. J Environ Law. 1995;7:323–37
Macarthur E. Growth within: a circular economy vision for a competitive europe. Chicago: Ellen MacArthur Foundation; 2015.
European Commission. Directive (Eu) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. WwwPlasticseuropeDe. 2019;2019:1–19.
EU. Commission Regulation (EU) 2022/1616 on recycled plastic materials and articles intended to come into contact with foods. Official Journal of the European Communities. 2022.
Anadón A, Binderup M-L, Bursch W, Castle L, Crebelli R, Engel K-H, et al. Scientific Opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food. EFSA J. 2011;9:2184.
Rung C, Welle F, Gruner A, Springer A, Steinmetz Z, Munoz K. Identification and evaluation of (non-)intentionally added substances in post-consumer recyclates and their toxicological classification. Recycling. 2023;8:24.
Lubongo C, Alexandridis P. Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste. Recycling. 2022;7:11.
Scientific Opinion on the safety evaluation of the following processes based on EREMA Basic technology used to recycle post-consumer PET into food contact materials “Octal”, “Pregis”, “Sabert”, “Linpac”, “ExtruPET”, “Evertis”, “Holfeld”, “Huhtamaki”, “Sne. EFSA J. 2013;11.
Welle F. Is PET bottle-to-bottle recycling safe? Evaluation of post-consumer recycling processes according to the EFSA guidelines. Resour Conserv Recycl. 2013;73:41–5.
Alvarado Chacon F, Brouwer MT, Thoden van Velzen EU. Effect of recycled content and rPET quality on the properties of PET bottles, part I: optical and mechanical properties. Packag Technol Sci. 2020;33:347–57.
Kang DH, Auras R, Vorst K, Singh J. An exploratory model for predicting post-consumer recycled PET content in PET sheets. Polym Test. 2011;30:60–8.
Frounchi M. Studies on degradation of PET in mechanical recycling. Macromol Symp. 1999;144:465–9.
Assadi R, Colin X, Verdu J. Irreversible structural changes during PET recycling by extrusion. Polymer (Guildf). 2004;45:4403–12.
Nait-Ali LK, Colin X, Bergeret A. Kinetic analysis and modelling of PET macromolecular changes during its mechanical recycling by extrusion. Polym Degrad Stab. 2011;96:236–46.
Oromiehie A, Mamizadeh A. Recycling PET beverage bottles and improving properties. Polym Int. 2004;53:728–32.
Badía JD, Vilaplana F, Karlsson S, Ribes-Greus A. Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polym Test. 2009;28:169–75.
Arhant M, Le Gall M, Le Gac PY, Davies P. Impact of hydrolytic degradation on mechanical properties of PET - towards an understanding of microplastics formation. Polym Degrad Stab. 2019;161:175–82.
Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer (Guildf). 2001;42:9423–31.
Ronkay F, Molnár B, Nagy D, Szarka G, Iván B, Kristály F, et al. Melting temperature versus crystallinity: new way for identification and analysis of multiple endotherms of poly(ethylene terephthalate). J Polym Res. 2020;27:372.
Van Antwerpen F, Van Krevelen DW. Influence of crystallization temperature, molecular weight, and additives on the crystallization kinetics of poly(ethylene terephthalate). J Polym Sci Part A-2 Polym Phys. 1972;10:2423–35.
Jabarin SA. Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J Appl Polym Sci. 1987;34:85–96. https://doi.org/10.1002/app.1987.070340107.
Lu XF, Hay JN. Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate). Polymer (Guildf). 2001;42:8055–67.
Chen Z, Hay JN, Jenkins MJ. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy. Thermochim Acta. 2013;552:123–30.
Zander NE, Gillan M, Lambeth RH. Recycled polyethylene terephthalate as a new FFF feedstock material. Addit Manuf. 2018;21:174–82.
Vyazovkin S. Thermal analysis. Anal Chem. 2002;74:2749–62.
Rodríguez Chialanza M, Sierra I, Pérez Parada A, Fornaro L. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environ Sci Pollut Res. 2018;25:16767–75.
Campos A, Oliveira RC. Cluster Analysis applied to the evaluation of urban landscape quality. The Sustainable City XI. WIT Press; 2016. pp. 93–103.
Godovsky YK. Thermophysical Properties of Polymers. Berlin: Springer Berlin Heidelberg; 1992.
Thoden van Velzen EU, Brouwer MT, Molenveld K. Technical quality of rPET : technical quality of rPET that can be obtained from Dutch PET bottles that have been collected, sorted and mechanically recycled in different manners. 2016.
Pinter E, Welle F, Mayrhofer E, Pechhacker A, Motloch L, Lahme V, et al. Circularity study on pet bottle-to-bottle recycling. Sustainability (Switzerland). 2021;13:7370.
Cheung M-F, Carduner KR, Golovoy A, Van Oene H. Studies on the role of organophosphites in polyester blends: II. The inhibition of ester-exchange reactions. J Appl Polym Sci. 1990;40:977–87.
Golovoy A, Cheung MF, Carduner KR, Rokosz MJ. The influence of aging on the effectiveness of an organophosphite in suppressing transesterification in polymer blends. Polym Bull. 1989;21:327–34.
Practice S. Standard practice for separation and identification of poly (vinyl chloride) (PVC) contamination in poly (ethylene terephthalate) (PET) flake. Current. 2002;08:95–7.
Li B, Wang ZW, Lin QB, Hu CY. Study of the migration of stabilizer and plasticizer from polyethylene terephthalate into food simulants. J Chromatogr Sci. 2016;54:939–51.
Bach C, Dauchy X, Chagnon MC, Etienne S. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Res Pergamon. 2012;46:571–83.
Bimestre BH, Saron C. Chain extension of poly (ethylene terephthalate) by reactive extrusion with secondary stabilizer. Mater Res. 2012;15:467–72.
Gerassimidou S, Lanska P, Hahladakis JN, Lovat E, Vanzetto S, Geueke B, et al. Unpacking the complexity of the PET drink bottles value chain: a chemicals perspective. J Hazard Mater. 2022;430:128410.
Dutra C, Freire MTDA, Nerín C, Bentayeb K, Rodriguez-Lafuente A, Aznar M, et al. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE. J Braz Chem Soc. 2014;25:686–96.
Cheng X, Shi H, Adams CD, Ma Y. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. Environ Sci Pollut Res. 2010;17:1323–30.
European committee for normalization. EN 15343:2008 - Plastics - Recycled Plastics - Plastics recycling traceability and assessment [Internet]. 2008 [cited 2021 Oct 4]. Available from: https://standards.iteh.ai/catalog/standards/sist/611fa317-e4c0-40b3-8dd9-c7450303cd16/sist-en-15343-2008
Risoluti R, Materazzi S, Sorrentino F, Maffei L, Caprari PCN. Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for ß-thalassemia screening. Talanta. 2016;159:425–32.
Risoluti R, Caprari P, Gullifa G, Massimi S, Maffei L, Sorrentino F, et al. An innovative multilevel test for hemoglobinopathies: TGA/Chemometrics simultaneously identifies and classifies sickle cell disease from thalassemia. Front Mol Biosci. 2020;7:141-9. https://doi.org/10.3389/fmolb.2020.00141.