A differential algebraic approach to mechanics with perfect nonholonomic constraints

Letters in Mathematical Physics - Tập 14 - Trang 211-214 - 1987
Michel Fliess1
1Laboratoire des Signaux et Systèmes, CNRS-ESE, Gif-sur-Yvette, France

Tóm tắt

Differential algebra permits the generalization of several features of symplectic formalism to mechanics with perfect nonholonomic constraints.

Tài liệu tham khảo

Hamel, G., Theoretische Mechanik, Springer-Verlag, Berlin, 1949; Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems (translated from the Russian), American Mathematical Society, Providence, RI, 1972. Dirac, P. A. M., Canad. J. Math. 2, 129 (1950); Proc. Royal Soc. London A 246 326 (1958). Weber, R. W., Arch. Rat. Mech. Anal. 92, 309 (1985). Ritt, J. F., Differential Algebra, American Mathematical Society, New York, 1950. Kolchin, E. R., Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Pommaret, J. F., Differential Galois Theory, Gordon and Breach, New York, 1983. Fliess, M., C.R. Acad. Sci. Paris I-304, 91 (1987); Automatique et corps différentiels (to appear). van der Schaft, A. J., J. Phys. A 20 (1987). Bourbaki, N., Algèbre, chap. 4 à 7, Masson, Paris, 1981. Johnson, J., Ann. Math. 89, 92 (1969). Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973. Rubel, L. and Singer, M. F., Proc. Amer. Math. Soc. 94, 653 (1985). Johnson, J., J. Algebra 78 91 (1982).