A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system

Computers and Electronics in Agriculture - Tập 180 - Trang 105887 - 2021
A. Tugnolo1, V. Giovenzana1, R. Beghi1, S. Grassi2, C. Alamprese2, A. Casson1, E. Casiraghi2, R. Guidetti1
1Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
2Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy

Tài liệu tham khảo

Abu-Khalaf, 2020, Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality, Comput. Electron. Agric., 173, 10.1016/j.compag.2020.105445 Ballabio, 2013, Classification tools in chemistry. Part 1: linear models. PLS-DA, Anal. Methods, 5, 3790, 10.1039/c3ay40582f Beghi, R., Giovenzana, V., Tugnolo, A. Casson, A., & Guidetti, R. (2020). Design of prototypes of LED based devices for the evaluation of grape (Vitis Vinifera L.) ripeness. Acta Horticlulturae (Accepted 06/2020). Casale, 2014, Near infrared spectroscopy for analysing olive oils, J. Near Infrared Spectrosc., 22, 59, 10.1255/jnirs.1106 Casson, 2020, Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness, Biosyst. Eng., 189, 1, 10.1016/j.biosystemseng.2019.11.003 Fagerland, 2013, The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional, BMC Med. Res. Method., 13, 91, 10.1186/1471-2288-13-91 Giovenzana, 2018, Use of visible and near infrared spectroscopy with a view to on-line evaluation of oil content during olive processing, Biosyst. Eng., 172, 102, 10.1016/j.biosystemseng.2018.06.001 Guzmán, 2015, Determination of the olive maturity index of intact fruits using image analysis, J. Food Sci. Technol., 52, 1462, 10.1007/s13197-013-1123-7 Fernández-Espinosa, 2016, Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time, Talanta, 148, 216, 10.1016/j.talanta.2015.10.084 Gatica, 2013, Olive fruits recognition using neural networks, Procedia Comput. Sci., 17, 412, 10.1016/j.procs.2013.05.053 Giraudo, 2019, Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis, Food Control, 99, 137, 10.1016/j.foodcont.2018.12.033 González-Cabrera, 2018, Hyperspectral FTIR imaging of olive fruit for understanding ripening processes, Postharvest Biol. Technol., 145, 74, 10.1016/j.postharvbio.2018.06.008 Jha, 2014, Nondestructive prediction of maturity of mango using near infrared spectroscopy, J. Food Eng., 124, 152, 10.1016/j.jfoodeng.2013.10.012 Mahmoud, 2016, User activities outliers detection; integration of statistical and computational intelligence techniques, Comput. Intell., 32, 49, 10.1111/coin.12045 Miaw, 2018, Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars, Talanta, 190, 55, 10.1016/j.talanta.2018.07.078 Nørgaard, 2000, Interval partial least-squares regression (i PLS): a comparative chemometric study with an example from near-infrared spectroscopy, Appl. Spectrosc., 54, 413, 10.1366/0003702001949500 Ram, 2010, Olive oil content prediction models based on image processing, Biosyst. Eng., 105, 221, 10.1016/j.biosystemseng.2009.10.011 Rhizopoulou, 2007, Olea europaea L. A botanical contribution to culture, American-Eurasian Journal of Agricultural & Environmental Sciences, 2, 382 Salguero-Chaparro, 2013, Calibration transfer of intact olive NIR spectra between a pre-dispersive instrument and a portable spectrometer, Comput. Electron. Agric., 96, 202, 10.1016/j.compag.2013.05.007 Trapani, 2017, Feasibility of filter-based NIR spectroscopy for the routine measurement of olive oil fruit ripening indices, Eur. J. Lipid Sci. Technol., 119, 1600239, 10.1002/ejlt.201600239 Uceda, M., & Frías, L. (1975). Épocas de recolección. Evolución del contenido graso del fruto y de la composición y calidad del aceite. Proceedings of II Seminario Oleícola International. Córdoba, Spain, 25-46. Wold, 1987, Principal component analysis, Chemometrics and intelligent laboratory systems, 2, 37, 10.1016/0169-7439(87)80084-9 Zhang, 2018, Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems: A technical review, Trends Food Sci. Technol., 81, 213, 10.1016/j.tifs.2018.09.018 Zhao, 2016, A review of key techniques of vision-based control for harvesting robot, Comput. Electron. Agric., 127, 311, 10.1016/j.compag.2016.06.022