A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system
Tài liệu tham khảo
Abu-Khalaf, 2020, Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality, Comput. Electron. Agric., 173, 10.1016/j.compag.2020.105445
Ballabio, 2013, Classification tools in chemistry. Part 1: linear models. PLS-DA, Anal. Methods, 5, 3790, 10.1039/c3ay40582f
Beghi, R., Giovenzana, V., Tugnolo, A. Casson, A., & Guidetti, R. (2020). Design of prototypes of LED based devices for the evaluation of grape (Vitis Vinifera L.) ripeness. Acta Horticlulturae (Accepted 06/2020).
Casale, 2014, Near infrared spectroscopy for analysing olive oils, J. Near Infrared Spectrosc., 22, 59, 10.1255/jnirs.1106
Casson, 2020, Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness, Biosyst. Eng., 189, 1, 10.1016/j.biosystemseng.2019.11.003
Fagerland, 2013, The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional, BMC Med. Res. Method., 13, 91, 10.1186/1471-2288-13-91
Giovenzana, 2018, Use of visible and near infrared spectroscopy with a view to on-line evaluation of oil content during olive processing, Biosyst. Eng., 172, 102, 10.1016/j.biosystemseng.2018.06.001
Guzmán, 2015, Determination of the olive maturity index of intact fruits using image analysis, J. Food Sci. Technol., 52, 1462, 10.1007/s13197-013-1123-7
Fernández-Espinosa, 2016, Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time, Talanta, 148, 216, 10.1016/j.talanta.2015.10.084
Gatica, 2013, Olive fruits recognition using neural networks, Procedia Comput. Sci., 17, 412, 10.1016/j.procs.2013.05.053
Giraudo, 2019, Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis, Food Control, 99, 137, 10.1016/j.foodcont.2018.12.033
González-Cabrera, 2018, Hyperspectral FTIR imaging of olive fruit for understanding ripening processes, Postharvest Biol. Technol., 145, 74, 10.1016/j.postharvbio.2018.06.008
Jha, 2014, Nondestructive prediction of maturity of mango using near infrared spectroscopy, J. Food Eng., 124, 152, 10.1016/j.jfoodeng.2013.10.012
Mahmoud, 2016, User activities outliers detection; integration of statistical and computational intelligence techniques, Comput. Intell., 32, 49, 10.1111/coin.12045
Miaw, 2018, Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars, Talanta, 190, 55, 10.1016/j.talanta.2018.07.078
Nørgaard, 2000, Interval partial least-squares regression (i PLS): a comparative chemometric study with an example from near-infrared spectroscopy, Appl. Spectrosc., 54, 413, 10.1366/0003702001949500
Ram, 2010, Olive oil content prediction models based on image processing, Biosyst. Eng., 105, 221, 10.1016/j.biosystemseng.2009.10.011
Rhizopoulou, 2007, Olea europaea L. A botanical contribution to culture, American-Eurasian Journal of Agricultural & Environmental Sciences, 2, 382
Salguero-Chaparro, 2013, Calibration transfer of intact olive NIR spectra between a pre-dispersive instrument and a portable spectrometer, Comput. Electron. Agric., 96, 202, 10.1016/j.compag.2013.05.007
Trapani, 2017, Feasibility of filter-based NIR spectroscopy for the routine measurement of olive oil fruit ripening indices, Eur. J. Lipid Sci. Technol., 119, 1600239, 10.1002/ejlt.201600239
Uceda, M., & Frías, L. (1975). Épocas de recolección. Evolución del contenido graso del fruto y de la composición y calidad del aceite. Proceedings of II Seminario Oleícola International. Córdoba, Spain, 25-46.
Wold, 1987, Principal component analysis, Chemometrics and intelligent laboratory systems, 2, 37, 10.1016/0169-7439(87)80084-9
Zhang, 2018, Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems: A technical review, Trends Food Sci. Technol., 81, 213, 10.1016/j.tifs.2018.09.018
Zhao, 2016, A review of key techniques of vision-based control for harvesting robot, Comput. Electron. Agric., 127, 311, 10.1016/j.compag.2016.06.022