A diagnostic approach integrated multimodal radiomics with machine learning models based on lumbar spine CT and X-ray for osteoporosis

Lili Cheng1, Fangqi Cai2, Meishu Xu1, Pan Liu1,3, Jun Liao1, Shaohui Zong1
1Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
2Department of Respiratory and Critical Care Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
3Department of Orthopaedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

Huang G, Chen X, Chen Y, Liu W, Chen C, Song W, Zeng G (2023) Causal relationship between type 2 diabetes mellitus and bone mineral density: a Mendelian randomization study in an East Asian population. Osteoporos Int. https://doi.org/10.1007/s00198-023-06807-6

Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S, Mohammadi M (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16:609. https://doi.org/10.1186/s13018-021-02772-0

Azangou-Khyavy M, Saeedi Moghaddam S, Mohammadi E, Shobeiri P, Rashidi MM, Ahmadi N, Shahsavan S, Shirzad Moghaddam Z, Sohrabi H, Pourghasem F, Kalantar R, Ghaffari A, Hashemi SM, Rezaei N, Larijani B (2022) Attributable disease burden related to low bone mineral density in Iran from 1990 to 2019: results from the Global Burden of Disease 2019. Arch Osteoporos 17:140. https://doi.org/10.1007/s11657-022-01180-z

Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, Pan X, Xu J, Qiao J, Zhang T, Ye L, Jiang H, Ren Y, Shan PF (2022) The Global Burden of Osteoporosis, low bone mass, and its related fracture in 204 Countries and Territories, 1990–2019. Front Endocrinol (Lausanne) 13:882241. https://doi.org/10.3389/fendo.2022.882241

St Jeor JD, Jackson TJ, Xiong AE, Freedman BA, Sebastian AS, Currier BL, Fogelson JL, Bydon M, Nassr A, Elder BD (2022) Average lumbar hounsfield units predicts osteoporosis-related complications following lumbar spine fusion. Global Spine J 12:851–857. https://doi.org/10.1177/2192568220975365

Liu Y, Dash A, Krez A, Kim HJ, Cunningham M, Schwab F, Hughes A, Carlson B, Samuel A, Marty E, Moore H, McMahon DJ, Carrino JA, Bockman RS, Stein EM (2020) Low volumetric bone density is a risk factor for early complications after spine fusion surgery. Osteoporos Int 31:647–654. https://doi.org/10.1007/s00198-019-05245-7

Li J, Zhang Z, Xie T, Song Z, Song Y, Zeng J (2023) The preoperative Hounsfield unit value at the position of the future screw insertion is a better predictor of screw loosening than other methods. Eur Radiol 33:1526–1536. https://doi.org/10.1007/s00330-022-09157-9

Gruenewald LD, Koch V, Martin SS, Yel I, Eichler K, Gruber-Rouh T, Lenga L, Wichmann JL, Alizadeh LS, Albrecht MH, Mader C, Huizinga NA, D’Angelo T, Mazziotti S, Wesarg S, Vogl TJ, Booz C (2022) Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures. Eur Radiol 32:3076–3084. https://doi.org/10.1007/s00330-021-08323-9

Escobio-Prieto I, Blanco-Diaz M, Pinero-Pinto E, Rodriguez-Rodriguez AM, Ruiz-Dorantes FJ, Albornoz-Cabello M (2023) Quantitative ultrasound and bone health in elderly people, a systematic review. Biomedicines. https://doi.org/10.3390/biomedicines11041175

Lin W, He C, Xie F, Chen T, Zheng G, Yin H, Chen H, Wang Z (2023) Quantitative CT screening improved lumbar BMD evaluation in older patients compared to dual-energy X-ray absorptiometry. BMC Geriatr 23:231. https://doi.org/10.1186/s12877-023-03963-6

Choi MK, Kim SM, Lim JK (2016) Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 158:1421–1427. https://doi.org/10.1007/s00701-016-2821-5

Kutlesa Z, Ordulj I, Peric I, Jerkovic K, Poljak D, Gavrilovic V, Capkun V, Devcic S, Budimir Mrsic D (2023) Opportunistic measures of bone mineral density at multiple skeletal sites during whole-body CT in polytrauma patients. Osteoporos Int 34:775–782. https://doi.org/10.1007/s00198-023-06699-6

Vadera S, Osborne T, Shah V, Stephenson JA (2023) Opportunistic screening for osteoporosis by abdominal CT in a British population. Insights Imaging 14:57. https://doi.org/10.1186/s13244-023-01400-1

Zaidi Q, Danisa OA, Cheng W (2019) Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine 44:E239–E244. https://doi.org/10.1097/BRS.0000000000002813

Kim KJ, Kim DH, Lee JI, Choi BK, Han IH, Nam KH (2019) Hounsfield units on lumbar computed tomography for predicting regional bone mineral density. Open Med (Wars) 14:545–551. https://doi.org/10.1515/med-2019-0061

Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Loffler MT, Zimmer C, Baum T, Kirschke JS (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30:1275–1285. https://doi.org/10.1007/s00198-019-04910-1

Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, Lambin P, Bottari F, Tsoutzidis N, Miraglio B, Walsh S, Vos W, Hustinx R, Ferreira M, Lovinfosse P, Leijenaar RTH (2022) A review in radiomics: making personalized medicine a reality via routine imaging. Med Res Rev 42:426–440. https://doi.org/10.1002/med.21846

Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053

Mookiah MRK, Subburaj K, Mei K, Kopp FK, Kaesmacher J, Jungmann PM, Foehr P, Noel PB, Kirschke JS, Baum T (2018) Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure. J Comput Assist Tomogr 42:441–447. https://doi.org/10.1097/RCT.0000000000000710

Lee S, Choe EK, Kang HY, Yoon JW, Kim HS (2020) The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population. Skeletal Radiol 49:613–618. https://doi.org/10.1007/s00256-019-03342-6

Zheng Y, Zhou D, Liu H, Wen M (2022) CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors. Eur Radiol 32:6953–6964. https://doi.org/10.1007/s00330-022-08830-3

Wu S, Wei Y, Li H, Zhou C, Chen T et al (2022) A Predictive clinical-radiomics nomogram for differentiating tuberculous spondylitis from pyogenic spondylitis using CT and clinical risk factors. Infect Drug Resist 15:7327–7338. https://doi.org/10.2147/IDR.S388868

Tang L, Ma L, Chen Y, Hu Y, Chen X, Huang X, Liu N (2023) Radiomics analysis of contrast-enhanced T1W MRI: predicting the recurrence of acute pancreatitis. Sci Rep 13:2762. https://doi.org/10.1038/s41598-022-13650-y

Jiang YW, Xu XJ, Wang R, Chen CM (2022) Radiomics analysis based on lumbar spine CT to detect osteoporosis. Eur Radiol 32:8019–8026. https://doi.org/10.1007/s00330-022-08805-4

Inui A, Nishimoto H, Mifune Y, Yoshikawa T, Shinohara I, Furukawa T, Kato T, Tanaka S, Kusunose M, Kuroda R (2023) Screening for osteoporosis from blood test data in elderly women using a machine learning approach. Bioengineering (Basel). https://doi.org/10.3390/bioengineering10030277

Xie Q, Chen Y, Hu Y, Zeng F, Wang P, Xu L, Wu J, Li J, Zhu J, Xiang M, Zeng F (2022) Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. BMC Med Imaging 22:140. https://doi.org/10.1186/s12880-022-00868-5

Younesi Asl L, Kashanian M, Najmi Z, Mahdavi A, SafarpourLima Z (2023) Risk factors of osteoporosis and osteopenia in postmenopausal women based on the L2–L4 BMD T score of the lumbar spine: a study in Iran. Gynecol Endocrinol 39:2205959. https://doi.org/10.1080/09513590.2023.2205959

Valenzuela-Martinez S, Ramirez-Exposito MJ, Carrera-Gonzalez MP, Martinez-Martos JM (2023) Physiopathology of osteoporosis: nursing involvement and management. Biomedicines. https://doi.org/10.3390/biomedicines11041220

Walsh JS, Vilaca T (2017) Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int 100:528–535. https://doi.org/10.1007/s00223-016-0229-0

Evans AL, Paggiosi MA, Eastell R, Walsh JS (2015) Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res 30:920–928. https://doi.org/10.1002/jbmr.2407

Lin WC, Lee MC, Chen YC, Hsu BG (2023) Inverse association of serum osteocalcin and bone mineral density in renal transplant recipients. Tzu Chi Med J 35:165–170. https://doi.org/10.4103/tcmj.tcmj_55_22

Shu J, Tan A, Li Y, Huang H, Yang J (2022) The correlation between serum total alkaline phosphatase and bone mineral density in young adults. BMC Musculoskelet Disord 23:467. https://doi.org/10.1186/s12891-022-05438-y

Chuang TL, Chuang MH, Lin CH, Chou SC, Wang YF (2020) Significant association factors of bone mineral density in Taiwan adults. Tzu Chi Med J 32:367–372. https://doi.org/10.4103/tcmj.tcmj_113_19

Tariq S, Tariq S, Shahzad M (2021) Association of serum chemerin with calcium, alkaline phosphatase and bone mineral density in postmenopausal females. Pak J Med Sci 37:384–388. https://doi.org/10.12669/pjms.37.2.3907

Sun JY, Zhang H, Zhang Y, Wang L, Sun BL, Gao F, Liu G (2021) Impact of serum calcium levels on total body bone mineral density: a mendelian randomization study in five age strata. Clin Nutr 40:2726–2733. https://doi.org/10.1016/j.clnu.2021.03.012

Cerani A, Zhou S, Forgetta V, Morris JA, Trajanoska K, Rivadeneira F, Larsson SC, Michaelsson K, Richards JB (2019) Genetic predisposition to increased serum calcium, bone mineral density, and fracture risk in individuals with normal calcium levels: mendelian randomisation study. BMJ 366:l4410. https://doi.org/10.1136/bmj.l4410

Li GH, Robinson-Cohen C, Sahni S, Au PC, Tan KC, Kung AW, Cheung CL (2020) Association of genetic variants related to serum calcium levels with reduced bone mineral density. J Clin Endocrinol Metab 105:e328–e336. https://doi.org/10.1210/clinem/dgz088

Pan K, Tu R, Yao X, Zhu Z (2021) Associations between serum calcium, 25(OH)D level and bone mineral density in adolescents. Adv Rheumatol 61:16. https://doi.org/10.1186/s42358-021-00174-8

Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V et al (2020) The Image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338. https://doi.org/10.1148/radiol.2020191145

Wang Q, Zhang Y, Zhang E, Xing X, Chen Y, Su MY, Lang N (2021) Prediction of the early recurrence in spinal giant cell tumor of bone using radiomics of preoperative CT: Long-term outcome of 62 consecutive patients. J Bone Oncol 27:100354. https://doi.org/10.1016/j.jbo.2021.100354

Sollmann N, Becherucci EA, Boehm C, Husseini ME, Ruschke S, Burian E, Kirschke JS, Link TM, Subburaj K, Karampinos DC, Krug R, Baum T, Dieckmeyer M (2022) Texture Analysis using CT and chemical shift encoding-based water-fat MRI can improve differentiation between patients with and without osteoporotic vertebral fractures. Front Endocrinol. https://doi.org/10.3389/fendo.2021.778537

Kawashima Y, Fujita A, Buch K, Li B, Qureshi MM, Chapman MN, Sakai O (2019) Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur J Radiol 116:212–218. https://doi.org/10.1016/j.ejrad.2019.05.009

Santos GNM, da Silva HEC, Ossege FEL, Figueiredo PTS, Melo NS, Stefani CM, Leite AF (2023) Radiomics in bone pathology of the jaws. Dentomaxillofac Radiol 52:20220225. https://doi.org/10.1259/dmfr.20220225