A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit

Ergys Subashi1, Corbin Jacobs2, Rodney Hood2, David G. Kirsch3,2, Oana Craciunescu
1Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
2Department of Radiation Oncology, Duke University Medical Center, Durham, USA
3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, USA

Tóm tắt

Abstract Background This report describes a process for designing a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. Case presentation A 34-year-old man with recurrent melanoma of the orbit was referred for consideration of re-irradiation. An applicator for HDR brachytherapy was designed based on the computed tomography (CT) of patient anatomy. The body contour was used to generate an applicator with a flush fit against the patient’s skin while the planning target volume (PTV) was used to devise channels that allow for access and coverage of the tumor bed. An end-to-end dosimetric test was devised to determine feasibility for clinical use. The applicator was designed to conform to the volume and contours inside the orbital cavity. Support wings placed flush with the patient skin provided stability and reproducibility, while 16 source channels of varying length were needed for sufficient access to the target. A solid sheath, printed as an outer support-wall for each channel, prevented bending or accidental puncturing of the surface of the applicator. Conclusions Quality assurance tests demonstrated feasibility for clinical use. Our experience with available 3D printing technology used to generate an applicator for the orbit may provide guidance for how materials of suitable biomechanical and radiation properties can be used in brachytherapy.

Từ khóa


Tài liệu tham khảo

Baltz GC, Chi P-CM, Wong P-F, Wang C, Craft DF, Kry SF, Lin SSH, Garden AS, Smith SA, Howell RM. Development and validation of a 3D-printed bolus cap for total scalp irradiation. J Appl Clin Med Phys. 2019;20(3):89–96. https://doi.org/10.1002/acm2.12552.

Belley MD, Craciunescu O, Chang Z, Langloss BW, Stanton IN, Yoshizumi TT, Therien MJ, Chino JP. Real-time dose-rate monitoring with gynecologic brachytherapy: results of an initial clinical trial. Brachytherapy. 2018;17(6):1023–9 https://doi.org/10.1016/j.brachy.2018.07.014.

Choi CH, Kim J-I, Park JM. A 3D-printed patient-specific applicator guide for use in high-dose-rate interstitial brachytherapy for tongue cancer: a phantom study. Phys Med Biol. 2019;64(13):135002. https://doi.org/10.1088/1361-6560/ab277e.

Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys. 2018;45(4):1614–21. https://doi.org/10.1002/mp.12839.

Cunha JAM, Mellis K, Sethi R, Siauw T, Sudhyadhom A, Garg A, Goldberg K, Hsu IC, Pouliot J. Evaluation of PC-ISO for customized, 3D printed, gynecologic HDR brachytherapy applicators. J Appl Clin Med Phys. 2015;16(1):246–53. https://doi.org/10.1120/jacmp.v16i1.5168.

Edwards C, Marks R. Evaluation of biomechanical properties of human skin. Clin Dermatol. 1995;13(4):375–80 https://doi.org/10.1016/0738-081X(95)00078-T.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

Finger PT, Tena LB, Semenova E, Aridgides P, Choi WH. Extrascleral extension of choroidal melanoma: post-enucleation high-dose-rate interstitial brachytherapy of the orbit. Brachytherapy. 2014;13(3):275–80. https://doi.org/10.1016/j.brachy.2013.09.002.

Fowler TL, Buyyounouski MK, Jenkins CH, Fahimian BP. Clinical implementation of 3D printing for brachytherapy: techniques and emerging applications. Brachytherapy. 2016;15:S166. https://doi.org/10.1016/j.brachy.2016.04.297.

Guthier CV, Devlin PM, Harris TC, O’Farrell DA, Cormack RA, Buzurovic I. Development and clinical implementation of semi-automated treatment planning including 3D printable applicator holders in complex skin brachytherapy. Med Phys. 2020;47(3):869–79. https://doi.org/10.1002/mp.13975.

Imber BS, Wolden SL, Stambuk HE, Matros E, Wexler LH, Drew AS, Rosen EB, Ganly I, Cohen GN, Damato AL. Novel intraoperative radiotherapy utilizing prefabricated custom three-dimensionally printed high-dose-rate applicators. Brachytherapy. 2019;18(3):277–84 https://doi.org/10.1016/j.brachy.2019.01.012.

Mason J, Mamo A, Al-Qaisieh B, Henry AM, Bownes P. Real-time in vivo dosimetry in high dose rate prostate brachytherapy. Radiother Oncol. 2016;120(2):333–8 https://doi.org/10.1016/j.radonc.2016.05.008.

Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–30 https://doi.org/10.1016/j.biomaterials.2010.04.050.

Patra S, Young V. A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem Biophys. 2016;74(2):93–8. https://doi.org/10.1007/s12013-016-0730-0.

Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41. https://doi.org/10.1007/s11548-010-0476-x.

Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, Mitch MG, Nath R, Williamson JF. Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633–74. https://doi.org/10.1118/1.1646040.

Zhao Y, Moran K, Yewondwossen M, Allan J, Clarke S, Rajaraman M, Wilke D, Joseph P, Robar JL. Clinical applications of 3-dimensional printing in radiation therapy. Med Dosim. 2017;42(2):150–5 https://doi.org/10.1016/j.meddos.2017.03.001.