A descriptor for the structural stability of organic–inorganic hybrid perovskites based on binding mechanism in electronic structure
Tóm tắt
The poor stability of organic–inorganic hybrid perovskites hinders its commercial application, which motivates a need for greater theoretical insight into its binding mechanism. To date, the binding mode of organic cation and anion inside organic–inorganic hybrid perovskites is still unclear and even contradictory. Therefore, in this work based on density functional theory (DFT), the binding mechanism between organic cation and anion was systematically investigated through electronic structure analysis including an examination of the electronic localization function (ELF), electron density difference (EDD), reduced density gradient (RDG), and energy decomposition analysis (EDA). The binding strength is mainly determined by Coulomb effect and orbital polarization. Based on the above analysis, a novel 2D linear regression descriptor that Eb = − 9.75Q2/R0 + 0.00053 V∙EHL − 6.11 with coefficient of determination R2 = 0.88 was proposed to evaluate the binding strength (the units for Q, R0, V, and EHL are |e|, Å, bohr3, and eV, respectively), revealing that larger Coulomb effect (Q2/R0), smaller volume of perovskite (V), and narrower energy difference (EHL) between the lowest unoccupied molecular orbital (LUMO) of organic cation and the highest occupied molecular orbital (HOMO) of anion correspond to the stronger binding strength, which guides the design of highly stable organic–inorganic hybrid perovskites.
Tài liệu tham khảo
Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r
Heo JH, Song DH, Han HJ, Kim SY, Kim JH, Kim D, Shin HW, Ahn TK, Wolf C, Lee TW (2015) Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater. 27:3424–3430. https://doi.org/10.1002/adma.201500048
Kowalczewski P, Andreani LC (2015) Towards the efficiency limits of silicon solar cells: how thin is too thin? Sol Energy Mater Sol Cells 143:260–268. https://doi.org/10.1016/j.solmat.2015.06.054
You S, Xi X, Zhang X, Wang H, Gao P, Ma X, Bi S, Zhang J, Zhou H, Wei Z (2020) Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. J Mater Chem A 8:17756–17764. https://doi.org/10.1039/D0TA05676F
Arias-Ramos CF, Kumar Y, Abrego-Martínez PG, Hu H (2020) Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent. Sol Energy Mater Sol Cells 215:110625. https://doi.org/10.1016/j.solmat.202020.110625
Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J (2018) Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun 9:3405. https://doi.org/10.1038/s41467-018-05761-w
Lim J, Kim M, Park HH, Jung H, Lim S, Hao X, Choi E, Park S, Lee M, Liu Z, Green MA, Seo J, Park J, Yun JS (2021) Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Sol Energy Mater Sol Cells 219:110776. https://doi.org/10.1016/j.solmat.2020.110776
Xia J, Luo J, Yang H, Wan Z, Malik HA, Shi Y, Yao X, Jia C (2020) Interface induced in-situ vertical phase separation from MAPbI3:Spiro-OMeTAD precursors for perovskite solar cells. Sol Energy Mater Sol Cells 216:110689. https://doi.org/10.1016/j.solmat.2020.110689
Fang H, Jena P (2017) Atomic-level design of water-resistant hybrid perovskites for solar cells by using cluster ions. J Phys Chem Lett 8:3726–3733. https://doi.org/10.1021/acs.jpclett.7b01529
Zhu Z, Hadjiev VG, Rong Y, Guo R, Cao B, Tang Z, Qin F, Li Y, Wang Y, Hao F, Venkatesan S, Li W, Baldelli S, Guloy AM, Fang H, Hu Y, Yao Y, Wang Z, Bao J (2016) Interaction of organic cation with water molecule in perovskite MAPbI3: From dynamic orientational disorder to hydrogen bonding. Chem Mater 28:7385–7393. https://doi.org/10.1021/acs.chemmater.6b02883
Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980. https://doi.org/10.1039/C4TA04994B
Christians JA, Miranda Herrera PA, Kamat PV (2015) Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc. 137:1530–1538. https://doi.org/10.1021/ja511132a
Gao Z, Yan G, Zhao M, Xu S, Li L, Huang H, Yang W, Ding X (2019) Theoretical insights into the stability of perovskite clusters by studying water adsorption on (CH3NH3)4SnI6. Sol Energy Mater Sol Cells 202:110126. https://doi.org/10.1016/j.solmat.2019.110126
Tong C-J, Geng W, Tang Z-K, Yam C-Y, Fan X-L, Liu J, Lau W-M, Liu L-M (2015) Uncovering the veil of the degradation in perovskite CH3NH3PbI3 upon humidity exposure: a first-principles study. J Phys Chem Lett 6:3289–3295. https://doi.org/10.1021/acs.jpclett.5b01544
Li B, Ferguson V, Silva SRP, Zhang W (2018) Defect engineering toward highly efficient and stable perovskite solar cells. Adv Mater Interfaces 5:1800326. https://doi.org/10.1002/admi.201800326
Ranjan R, Usmani B, Pali S, Ranjan S, Singh A, Garg A, Gupta RK (2020) Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Sol Energy Mater Sol Cells 207:110335. https://doi.org/10.1016/j.solmat.2019.110335
Wang M, Li W, Lu F, Ding X (2020) Theoretical study on the stability of the complexes A...BX3 [A = CH3NH3(+), NH2CHNH2(+), NH2CHOH(+); B = Sn(2+), Pb(2+); X = F(-), Cl(-), Br(-), I(-)]. J Mol Model 26: 46. https://doi.org/10.1007/s00894-020-4303-1.
Fang H, Jena P (2016) Molecular origin of properties of organic-inorganic hybrid perovskites: the big picture from small clusters. J Phys Chem Lett 7:1596–1603. https://doi.org/10.1021/acs.jpclett.6b00435
Ghosh D, Smith AR, Walker AB, Islam MS (2018) Mixed A-cation perovskites for solar cells: Atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem Mater 30:5194–5204. https://doi.org/10.1021/acs.chemmater.8b01851
Li H, Guo S, Shin K, Wong MS, Henkelman G (2019) Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal 9:7957–7966. https://doi.org/10.1021/acscatal.9b02182
Li H, Shin K, Henkelman G (2018) Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys 149:174705. https://doi.org/10.1063/1.5053894
Liu C, Li H, Liu F, Chen J, Yu Z, Yuan Z, Wang C, Zheng H, Henkelman G, Wei L, Chen Y (2020) Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis, J Am Chem Soc 21861–21871. https://doi.org/10.1021/jacs.0c10636.
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Chem Phys 98:11623–11627. https://doi.org/10.1021/j100096a001
Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J. A, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT.
Matczak P (2017) Description of weak halogen bonding using various levels of symmetry-adapted perturbation theory combined with effective core potentials. J Chem 2017:9031494. https://doi.org/10.1155/2017/9031494
Xie N, Wang H, You C (2021) Role of oxygen functional groups in Pb2+ adsorption from aqueous solution on carbonaceous surface: A density functional theory study. J Hazard Mater 405:124221. https://doi.org/10.1016/j.jhazmat.2020.124221
Lu H, He B, Ji Y, Shan Y, Zhong C, Xu J, LiuYang J, Wu F, Zhu L (2020) Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chem Eng J 385:123976. https://doi.org/10.1016/j.cej.2019.123976
Magomedov A, Kasparavičius E, Rakstys K, Paek S, Gasilova N, Genevičius K, Juška G, Malinauskas T, Nazeeruddin MK, Getautis V (2018) Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. J Mater Chem C 6:8874–8878. https://doi.org/10.1039/C8TC02242A
Yang Y, Wu F, Lu H, Li S, Zhong C, Zhu L (2020) Bipyrimidine core structure-based hole transport materials for efficient perovskite solar cells, Sustain. Energy Fuels 4:5271–5276. https://doi.org/10.1039/D0SE01062F
Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344
Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885
Varadwaj A, Varadwaj PR, Yamashita K (2017) Hybrid organic-inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J Comput Chem 38:2802–2818. https://doi.org/10.1002/jcc.25073
Liu X, Gao Z, Wang C, Zhao M, Ding X, Yang W, Ding Z (2019) Hg0 oxidation and SO3, Pb0, PbO, PbCl2 and As2O3 adsorption by graphene-based bimetallic catalyst ((Fe, Co)@N-GN): A DFT study. Appl Surf Sci 496:143686. https://doi.org/10.1016/j.apsusc.2019.143686
Liu X, Gao Z, Huang H, Yan G, Huang T, Chen C, Yang W, Ding X-L (2020) Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. Mol Catal 488:110901. https://doi.org/10.1016/j.mcat.2020.110901
Gao Z, Zhao M, Yan G, Huang H, Yang W, Ding X, Wu C, Gates ID (2020) Identifying the active sites of carbonaceous surface for the adsorption of gaseous arsenic trioxide: A theoretical study. Chem Eng J. 402:125800. https://doi.org/10.1016/j.cej.2020.125800
Gao Z, Liu X, Li A, Ma C, Li X, Ding X, Yang W (2019) Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO2 on this adsorption: a theoretical investigation. J Mol Model 25:142. https://doi.org/10.1007/s00894-019-4026-3
Fang H, Jena P (2016) Super-ion inspired colorful hybrid perovskite solar cells. J Mater Chem A 4:4728–4737. https://doi.org/10.1039/C5TA09646D
Frohna K, Deshpande T, Harter J, Peng W, Barker BA, Neaton JB, Louie SG, Bakr OM, Hsieh D, Bernardi M (2018) Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat Commun 9:1829. https://doi.org/10.1038/s41467-018-04212-w
Gao Z, Ding Y (2017) DFT study of CO2 and H2O co-adsorption on carbon models of coal surface. J Mol Model 23:187. https://doi.org/10.1007/s00894-017-3356-2
Quarti C, Mosconi E, De Angelis F (2014) Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem Mater 26:6557–6569. https://doi.org/10.1021/cm5032046
Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14:477–485. https://doi.org/10.1007/BF01507527
Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7:4548–4556. https://doi.org/10.1039/C5SC04845A
Shanno RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. https://doi.org/10.1107/S0567739476001551
Gao Z, Chen S, Bai Y, Wang M, Liu X, Yang W, Li W, Ding X, Yao J (2021) A new perspective for evaluating the photoelectric performance of organic–inorganic hybrid perovskites based on the DFT calculations of excited states. Phys Chem Chem Phys 23:11548–11556. https://doi.org/10.1039/D1CP01000J
Shi T, Li G, Zhu J (2017) Compositional design strategy for high performance ferroelectric oxides with perovskite structure. Ceram Int 43:2910–2917. https://doi.org/10.1016/j.ceramint.2016.11.085
Becker M, Kluner T, Wark M (2017) Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans 46:3500–3509. https://doi.org/10.1039/C6DT04796C
Gao Z-Y, Yang W-J, Ding X-L, Lv G, Yan W-P (2018) Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates. Phys Chem Chem Phys 20:7333–7341. https://doi.org/10.1039/C7CP08301G
Ling Y, Wu J, Li B, Liu D (2021) Insights into the mechanism of elemental mercury adsorption on graphitic carbon nitride: a density functional theory study. Energy Fuels 35:9322–9331. https://doi.org/10.1021/acs.energyfuels.1c00624
Li H, Xu S, Wang M, Chen Z, Ji F, Cheng K, Gao Z, Ding Z, Yang W (2020) Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J Mater Chem A 8:17987–17997. https://doi.org/10.1039/D0TA04615A
Li H, Zhang Z, Liu Z (2019) Non-monotonic trends of hydrogen adsorption on single atom doped g-C3N4. Catalysts 9:84. https://doi.org/10.3390/catal9010084
Gao Z, Zhang H, Mao G, Ren J, Chen Z, Wu C, Gates ID, Yang W, Ding X, Yao J (2021) Appl Surf Sci 561:150916. https://doi.org/10.1016/j.apsusc.2021.150916
Yang L, Chen Y, Wang X, Deng J, Wang W, Ding X, Yang W, Yao J (2021) J Phys Chem C 125(43):24096–24104. https://doi.org/10.1021/acs.jpcc.1c06317
Gao Z, Wang M, Zhang H, Chen S, Wu C, Gates ID, Yang W, Ding X, Yao J (2021) Sol Energy Mater Sol Cells 233:111401. https://doi.org/10.1016/j.solmat.2021.111401