A descriptor for the structural stability of organic–inorganic hybrid perovskites based on binding mechanism in electronic structure

Journal of Molecular Modeling - Tập 28 - Trang 1-11 - 2022
Xiaoshuo Liu1,2, Yang Bai1, Shengyi Chen1, Chongchong Wu3, Ian D. Gates3, Tianfang Huang2, Wei Li4,5, Weijie Yang1, Zhengyang Gao1, Jianxi Yao6,7, Xunlei Ding4,5
1Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, China
2Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, China
3Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
4School of Mathematics and Physics, North China Electric Power University, Beijing, China
5Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, China
6State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
7Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, China

Tóm tắt

The poor stability of organic–inorganic hybrid perovskites hinders its commercial application, which motivates a need for greater theoretical insight into its binding mechanism. To date, the binding mode of organic cation and anion inside organic–inorganic hybrid perovskites is still unclear and even contradictory. Therefore, in this work based on density functional theory (DFT), the binding mechanism between organic cation and anion was systematically investigated through electronic structure analysis including an examination of the electronic localization function (ELF), electron density difference (EDD), reduced density gradient (RDG), and energy decomposition analysis (EDA). The binding strength is mainly determined by Coulomb effect and orbital polarization. Based on the above analysis, a novel 2D linear regression descriptor that Eb =  − 9.75Q2/R0 + 0.00053 V∙EHL − 6.11 with coefficient of determination R2 = 0.88 was proposed to evaluate the binding strength (the units for Q, R0, V, and EHL are |e|, Å, bohr3, and eV, respectively), revealing that larger Coulomb effect (Q2/R0), smaller volume of perovskite (V), and narrower energy difference (EHL) between the lowest unoccupied molecular orbital (LUMO) of organic cation and the highest occupied molecular orbital (HOMO) of anion correspond to the stronger binding strength, which guides the design of highly stable organic–inorganic hybrid perovskites.

Tài liệu tham khảo

Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r Heo JH, Song DH, Han HJ, Kim SY, Kim JH, Kim D, Shin HW, Ahn TK, Wolf C, Lee TW (2015) Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater. 27:3424–3430. https://doi.org/10.1002/adma.201500048 Kowalczewski P, Andreani LC (2015) Towards the efficiency limits of silicon solar cells: how thin is too thin? Sol Energy Mater Sol Cells 143:260–268. https://doi.org/10.1016/j.solmat.2015.06.054 You S, Xi X, Zhang X, Wang H, Gao P, Ma X, Bi S, Zhang J, Zhou H, Wei Z (2020) Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. J Mater Chem A 8:17756–17764. https://doi.org/10.1039/D0TA05676F Arias-Ramos CF, Kumar Y, Abrego-Martínez PG, Hu H (2020) Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent. Sol Energy Mater Sol Cells 215:110625. https://doi.org/10.1016/j.solmat.202020.110625 Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J (2018) Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun 9:3405. https://doi.org/10.1038/s41467-018-05761-w Lim J, Kim M, Park HH, Jung H, Lim S, Hao X, Choi E, Park S, Lee M, Liu Z, Green MA, Seo J, Park J, Yun JS (2021) Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Sol Energy Mater Sol Cells 219:110776. https://doi.org/10.1016/j.solmat.2020.110776 Xia J, Luo J, Yang H, Wan Z, Malik HA, Shi Y, Yao X, Jia C (2020) Interface induced in-situ vertical phase separation from MAPbI3:Spiro-OMeTAD precursors for perovskite solar cells. Sol Energy Mater Sol Cells 216:110689. https://doi.org/10.1016/j.solmat.2020.110689 Fang H, Jena P (2017) Atomic-level design of water-resistant hybrid perovskites for solar cells by using cluster ions. J Phys Chem Lett 8:3726–3733. https://doi.org/10.1021/acs.jpclett.7b01529 Zhu Z, Hadjiev VG, Rong Y, Guo R, Cao B, Tang Z, Qin F, Li Y, Wang Y, Hao F, Venkatesan S, Li W, Baldelli S, Guloy AM, Fang H, Hu Y, Yao Y, Wang Z, Bao J (2016) Interaction of organic cation with water molecule in perovskite MAPbI3: From dynamic orientational disorder to hydrogen bonding. Chem Mater 28:7385–7393. https://doi.org/10.1021/acs.chemmater.6b02883 Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980. https://doi.org/10.1039/C4TA04994B Christians JA, Miranda Herrera PA, Kamat PV (2015) Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc. 137:1530–1538. https://doi.org/10.1021/ja511132a Gao Z, Yan G, Zhao M, Xu S, Li L, Huang H, Yang W, Ding X (2019) Theoretical insights into the stability of perovskite clusters by studying water adsorption on (CH3NH3)4SnI6. Sol Energy Mater Sol Cells 202:110126. https://doi.org/10.1016/j.solmat.2019.110126 Tong C-J, Geng W, Tang Z-K, Yam C-Y, Fan X-L, Liu J, Lau W-M, Liu L-M (2015) Uncovering the veil of the degradation in perovskite CH3NH3PbI3 upon humidity exposure: a first-principles study. J Phys Chem Lett 6:3289–3295. https://doi.org/10.1021/acs.jpclett.5b01544 Li B, Ferguson V, Silva SRP, Zhang W (2018) Defect engineering toward highly efficient and stable perovskite solar cells. Adv Mater Interfaces 5:1800326. https://doi.org/10.1002/admi.201800326 Ranjan R, Usmani B, Pali S, Ranjan S, Singh A, Garg A, Gupta RK (2020) Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Sol Energy Mater Sol Cells 207:110335. https://doi.org/10.1016/j.solmat.2019.110335 Wang M, Li W, Lu F, Ding X (2020) Theoretical study on the stability of the complexes A...BX3 [A = CH3NH3(+), NH2CHNH2(+), NH2CHOH(+); B = Sn(2+), Pb(2+); X = F(-), Cl(-), Br(-), I(-)]. J Mol Model 26: 46. https://doi.org/10.1007/s00894-020-4303-1. Fang H, Jena P (2016) Molecular origin of properties of organic-inorganic hybrid perovskites: the big picture from small clusters. J Phys Chem Lett 7:1596–1603. https://doi.org/10.1021/acs.jpclett.6b00435 Ghosh D, Smith AR, Walker AB, Islam MS (2018) Mixed A-cation perovskites for solar cells: Atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem Mater 30:5194–5204. https://doi.org/10.1021/acs.chemmater.8b01851 Li H, Guo S, Shin K, Wong MS, Henkelman G (2019) Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal 9:7957–7966. https://doi.org/10.1021/acscatal.9b02182 Li H, Shin K, Henkelman G (2018) Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys 149:174705. https://doi.org/10.1063/1.5053894 Liu C, Li H, Liu F, Chen J, Yu Z, Yuan Z, Wang C, Zheng H, Henkelman G, Wei L, Chen Y (2020) Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis, J Am Chem Soc 21861–21871. https://doi.org/10.1021/jacs.0c10636. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Chem Phys 98:11623–11627. https://doi.org/10.1021/j100096a001 Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J. A, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT. Matczak P (2017) Description of weak halogen bonding using various levels of symmetry-adapted perturbation theory combined with effective core potentials. J Chem 2017:9031494. https://doi.org/10.1155/2017/9031494 Xie N, Wang H, You C (2021) Role of oxygen functional groups in Pb2+ adsorption from aqueous solution on carbonaceous surface: A density functional theory study. J Hazard Mater 405:124221. https://doi.org/10.1016/j.jhazmat.2020.124221 Lu H, He B, Ji Y, Shan Y, Zhong C, Xu J, LiuYang J, Wu F, Zhu L (2020) Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chem Eng J 385:123976. https://doi.org/10.1016/j.cej.2019.123976 Magomedov A, Kasparavičius E, Rakstys K, Paek S, Gasilova N, Genevičius K, Juška G, Malinauskas T, Nazeeruddin MK, Getautis V (2018) Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. J Mater Chem C 6:8874–8878. https://doi.org/10.1039/C8TC02242A Yang Y, Wu F, Lu H, Li S, Zhong C, Zhu L (2020) Bipyrimidine core structure-based hole transport materials for efficient perovskite solar cells, Sustain. Energy Fuels 4:5271–5276. https://doi.org/10.1039/D0SE01062F Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344 Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885 Varadwaj A, Varadwaj PR, Yamashita K (2017) Hybrid organic-inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J Comput Chem 38:2802–2818. https://doi.org/10.1002/jcc.25073 Liu X, Gao Z, Wang C, Zhao M, Ding X, Yang W, Ding Z (2019) Hg0 oxidation and SO3, Pb0, PbO, PbCl2 and As2O3 adsorption by graphene-based bimetallic catalyst ((Fe, Co)@N-GN): A DFT study. Appl Surf Sci 496:143686. https://doi.org/10.1016/j.apsusc.2019.143686 Liu X, Gao Z, Huang H, Yan G, Huang T, Chen C, Yang W, Ding X-L (2020) Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. Mol Catal 488:110901. https://doi.org/10.1016/j.mcat.2020.110901 Gao Z, Zhao M, Yan G, Huang H, Yang W, Ding X, Wu C, Gates ID (2020) Identifying the active sites of carbonaceous surface for the adsorption of gaseous arsenic trioxide: A theoretical study. Chem Eng J. 402:125800. https://doi.org/10.1016/j.cej.2020.125800 Gao Z, Liu X, Li A, Ma C, Li X, Ding X, Yang W (2019) Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO2 on this adsorption: a theoretical investigation. J Mol Model 25:142. https://doi.org/10.1007/s00894-019-4026-3 Fang H, Jena P (2016) Super-ion inspired colorful hybrid perovskite solar cells. J Mater Chem A 4:4728–4737. https://doi.org/10.1039/C5TA09646D Frohna K, Deshpande T, Harter J, Peng W, Barker BA, Neaton JB, Louie SG, Bakr OM, Hsieh D, Bernardi M (2018) Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat Commun 9:1829. https://doi.org/10.1038/s41467-018-04212-w Gao Z, Ding Y (2017) DFT study of CO2 and H2O co-adsorption on carbon models of coal surface. J Mol Model 23:187. https://doi.org/10.1007/s00894-017-3356-2 Quarti C, Mosconi E, De Angelis F (2014) Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem Mater 26:6557–6569. https://doi.org/10.1021/cm5032046 Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14:477–485. https://doi.org/10.1007/BF01507527 Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7:4548–4556. https://doi.org/10.1039/C5SC04845A Shanno RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. https://doi.org/10.1107/S0567739476001551 Gao Z, Chen S, Bai Y, Wang M, Liu X, Yang W, Li W, Ding X, Yao J (2021) A new perspective for evaluating the photoelectric performance of organic–inorganic hybrid perovskites based on the DFT calculations of excited states. Phys Chem Chem Phys 23:11548–11556. https://doi.org/10.1039/D1CP01000J Shi T, Li G, Zhu J (2017) Compositional design strategy for high performance ferroelectric oxides with perovskite structure. Ceram Int 43:2910–2917. https://doi.org/10.1016/j.ceramint.2016.11.085 Becker M, Kluner T, Wark M (2017) Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans 46:3500–3509. https://doi.org/10.1039/C6DT04796C Gao Z-Y, Yang W-J, Ding X-L, Lv G, Yan W-P (2018) Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates. Phys Chem Chem Phys 20:7333–7341. https://doi.org/10.1039/C7CP08301G Ling Y, Wu J, Li B, Liu D (2021) Insights into the mechanism of elemental mercury adsorption on graphitic carbon nitride: a density functional theory study. Energy Fuels 35:9322–9331. https://doi.org/10.1021/acs.energyfuels.1c00624 Li H, Xu S, Wang M, Chen Z, Ji F, Cheng K, Gao Z, Ding Z, Yang W (2020) Computational design of (100) alloy surfaces for the hydrogen evolution reaction. J Mater Chem A 8:17987–17997. https://doi.org/10.1039/D0TA04615A Li H, Zhang Z, Liu Z (2019) Non-monotonic trends of hydrogen adsorption on single atom doped g-C3N4. Catalysts 9:84. https://doi.org/10.3390/catal9010084 Gao Z, Zhang H, Mao G, Ren J, Chen Z, Wu C, Gates ID, Yang W, Ding X, Yao J (2021) Appl Surf Sci 561:150916. https://doi.org/10.1016/j.apsusc.2021.150916 Yang L, Chen Y, Wang X, Deng J, Wang W, Ding X, Yang W, Yao J (2021) J Phys Chem C 125(43):24096–24104. https://doi.org/10.1021/acs.jpcc.1c06317 Gao Z, Wang M, Zhang H, Chen S, Wu C, Gates ID, Yang W, Ding X, Yao J (2021) Sol Energy Mater Sol Cells 233:111401. https://doi.org/10.1016/j.solmat.2021.111401