A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests
Tóm tắt
Từ khóa
Tài liệu tham khảo
Iverson RM, 2014, Proc. R. Soc. A, 20130819
Stoker JJ, 1957, Water waves: the mathematical theory with applications.
Iverson RM, 2003, Debris-flow hazards mitigation: mechanics, prediction, and assessment, 303
Jackson R, 2000, The dynamics of fluidized particles. Cambridge Monographs on Mechanics.
Pelanti M, Hyperbolic problems: theory, numerics, applications, 825
Kowalski J. 2008 Two-phase modeling of debris flows. PhD thesis ETH Zurich Switzerland.
Dal Maso G, 1995, Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483
Bressan A, 2000, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem., 10.1093/oso/9780198507000.001.0001
Bressan A, 2000, Well posedness of the Cauchy problem for n × n conservation laws, Mem. Am. Math. Soc., 694
de Saint-Venant AJC, 1871, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marees dans leur lit.”, C. R. Acad. Sci. Paris, 73, 147
Greve R, 1994, Proc. R. Soc. Lond. A, 399
Gray JMNT, 1999, Proc. R. Soc. Lond. A, 1841
Godunov SK, 1959, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 47, 271
Clawpack. 2013 The clawpack software. See http://www.clawpack.org.
Logan M& Iverson RM. Video documentation of experiments at the USGS debris-flow flume 1992–2006 (amended to include 2007–2013) 2007. US Geological Survey Open-file Report 2007–1315. (http://pubs.usgs.gov/of/2007/1315/).
Reid ME, Proc. 1st Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 1
Iverson RM, 2009, Powders and Grains 2009, 9