A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests

David L. George1, Richard M. Iverson2,1
1US Geological Survey, 1300 SE Cardinal Ct. Vancouver, WA 98683, USA
2Richard M. Iverson Google Scholar Find this author on PubMed

Tóm tắt

We evaluate a new depth-averaged mathematical model that is designed to simulate all stages of debris-flow motion, from initiation to deposition. A companion paper shows how the model's five governing equations describe simultaneous evolution of flow thickness, solid volume fraction, basal pore-fluid pressure and two components of flow momentum. Each equation contains a source term that represents the influence of state-dependent granular dilatancy. Here, we recapitulate the equations and analyse their eigenstructure to show that they form a hyperbolic system with desirable stability properties. To solve the equations, we use a shock-capturing numerical scheme with adaptive mesh refinement, implemented in an open-source software package we call D-Claw. As tests of D-Claw, we compare model output with results from two sets of large-scale debris-flow experiments. One set focuses on flow initiation from landslides triggered by rising pore-water pressures, and the other focuses on downstream flow dynamics, runout and deposition. D-Claw performs well in predicting evolution of flow speeds, thicknesses and basal pore-fluid pressures measured in each type of experiment. Computational results illustrate the critical role of dilatancy in linking coevolution of the solid volume fraction and pore-fluid pressure, which mediates basal Coulomb friction and thereby regulates debris-flow dynamics.

Từ khóa


Tài liệu tham khảo

Iverson RM, 2014, Proc. R. Soc. A, 20130819

Stoker JJ, 1957, Water waves: the mathematical theory with applications.

Iverson RM, 2003, Debris-flow hazards mitigation: mechanics, prediction, and assessment, 303

10.1098/rsta.2005.1596

Jackson R, 2000, The dynamics of fluidized particles. Cambridge Monographs on Mechanics.

10.1051/m2an:2008029

Pelanti M, Hyperbolic problems: theory, numerics, applications, 825

10.1029/2011JF002186

Kowalski J. 2008 Two-phase modeling of debris flows. PhD thesis ETH Zurich Switzerland.

10.1029/97RG00426

10.1029/2000JB900329

10.1017/jfm.2012.489

10.1146/annurev.earth.25.1.85

10.1126/science.290.5491.513

10.1029/2009JF001514

10.1007/BF01175958

10.1017/CBO9780511791253

Dal Maso G, 1995, Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483

10.1016/j.jcp.2008.05.012

Bressan A, 2000, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem., 10.1093/oso/9780198507000.001.0001

Bressan A, 2000, Well posedness of the Cauchy problem for n × n conservation laws, Mem. Am. Math. Soc., 694

de Saint-Venant AJC, 1871, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marees dans leur lit.”, C. R. Acad. Sci. Paris, 73, 147

10.1017/S0022112089000340

10.1016/S1631-073X(03)00117-1

Greve R, 1994, Proc. R. Soc. Lond. A, 399

Gray JMNT, 1999, Proc. R. Soc. Lond. A, 1841

10.4310/CMS.2004.v2.n3.a2

10.5194/nhess-5-799-2005

10.1017/S0022112003005342

Godunov SK, 1959, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 47, 271

10.1002/cpa.3160130205

10.1007/978-1-4612-0713-9

10.1007/978-3-662-03490-3

Clawpack. 2013 The clawpack software. See http://www.clawpack.org.

10.1016/j.advwatres.2011.02.016

10.1017/S0962492911000043

10.1002/fld.2298

10.1016/0021-9991(88)90036-8

10.1137/S106482750139738X

10.1016/0021-9991(81)90128-5

10.1090/S0025-5718-1994-1201068-0

10.1137/0733001

10.1007/b93802

10.1029/2004JB003161

10.1137/040607642

10.1029/2006JF000469

10.1016/j.jcp.2007.10.027

10.1002/fld.285

10.4310/CMS.2007.v5.n1.a6

10.1002/fld.1311

10.1006/jcph.1996.5603

10.1016/0021-9991(84)90073-1

10.1137/S0036142997315974

Logan M& Iverson RM. Video documentation of experiments at the USGS debris-flow flume 1992–2006 (amended to include 2007–2013) 2007. US Geological Survey Open-file Report 2007–1315. (http://pubs.usgs.gov/of/2007/1315/).

Reid ME, Proc. 1st Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 1

10.1061/(ASCE)1090-0241(1997)123:3(281)

10.1016/S0013-7952(99)00016-2

10.1137/07070704X

Iverson RM, 2009, Powders and Grains 2009, 9

10.1029/2011JF002185

10.1090/S0025-5718-06-01851-5