A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations

manuscripta mathematica - Tập 124 - Trang 507-531 - 2007
D. Motreanu1, V. V. Motreanu1, N. S. Papageorgiou2
1Département de Mathématiques, Université de Perpignan, Perpignan, France
2Department of Mathematics, National Technical University, Athens, Greece

Tóm tắt

We consider nonlinear elliptic equations driven by the p-Laplacian differential operator. Using degree theoretic arguments based on the degree map for operators of type (S)+ , we prove theorems on the existence of multiple nontrivial solutions of constant sign.

Tài liệu tham khảo

Amann H. (1976). Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18: 620–709 Amann H. (1982). A note on degree theory for gradient mappings. Proc. Am. Math. Soc. 85: 591–595 Amann H. and Zehnder E. (1980). Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(5): 539–603 Ambrosetti A., Brezis H. and Cerami G. (1994). Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122: 519–543 Ambrosetti A., García Azorero J. and Peral Alonso I. (1996). Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137: 219–242 Anane A. (1987). Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305: 725–728 Anello G. and Cordaro G. (2002). Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A 132: 511–519 Brezis H. and Nirenberg L. (1993). H 1 versus C 1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317: 465–472 Browder F. (1983). Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. (N.S.) 9: 1–39 Browder, F.: Degree theory for nonlinear mappings. In: Proc. Sympos. Pure Math., 45, Part 1, Am. Math. Soc., Providence, RI, pp. 203–226 (1986) Brown K.J. and Budin H. (1977). Multiple positive solutions for a class of nonlinear boundary value problems. J. Math. Anal. Appl. 60: 329–338 Dancer E.N. and Du Y. (1997). A note on multiple solutions for some semilinear elliptic problems. J. Math. Anal. Appl. 211: 626–640 De Figueiredo, D.: Positive solutions of semilinear elliptic problems. In: “Differential equations” Proceedings of Sao Paulo Conference 1981, Lecture Notes in Mathematics, vol. 957, pp. 34–87. Springer, Berlin (1982) De Figueiredo D. and Lions P.-L. (1985). On pairs of positive solutions for a class of semilinear elliptic problems. Indiana Univ. Math. J. 34: 591–606 Denkowski Z., Migorski S. and Papageorgiou N.S. (2003). An Introduction to Nonlinear Analysis: Theory. Kluwer/Plenum, New York Denkowski Z., Migorski S. and Papageorgiou N.S. (2003). An Introduction to Nonlinear Analysis: Applications. Kluwer/Plenum, New York Di Benedetto E. (1983). C 1,α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7: 827–850 Drábek P., Kufner A. and Nicolosi F. (1997). Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter & Co., Berlin García Azorero J. and Peral Alonso I. (1994). Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43: 941–957 García Azorero J.P., Peral Alonso I. and Manfredi J.J. (2000). Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2: 385–404 Gasiński L. and Papageorgiou N.S. (2006). Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton Godoy T., Gossez J.-P. and Paczka S. (2002). On the antimaximum principle for the p-Laplacian with indefinite weight. Nonlinear Anal. 51: 449–467 Guedda M. and Véron L. (1989). Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13: 879–902 Guo Z. (1996). On the number of positive solutions for quasilinear elliptic eigenvalue problems. Nonlinear Anal. 27: 229–247 Hu S. and Papageorgiou N.S. (1995). Generalizations of Browder’s degree theory. Trans. Am. Math. Soc. 347: 233–259 Ladyzhenskaya O. and Uraltseva N. (1968). Linear and Quasilinear Elliptic Equations. Academic Press, New York Li E. and Wang Z.Q. (2000). Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. Anal. Math. 81: 373–396 Lieberman G. (1988). Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12: 1203–1219 Lions P.-L. (1982). On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24: 441–467 Motreanu D. and Papageorgiou N.S. (2004). Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential. Nonlinear Anal. 56: 1211–1234 Ôtani M. (1988). Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76: 140–159 Ricceri B. (2000). A general variational principle and some of its applications. J. Comput. Appl. Math. 113: 401–410 Tolksdorf P. (1984). Regularity for a more general class of nonlinear analysis elliptic equations. J. Differ. Equ. 51: 126–150 Vázquez J.L. (1984). A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12: 191–202 Zeidler E. (1990). Nonlinear functional analysis and its applications II. Nonlinear monotone operators. Springer, New York