A deep learning framework for sequence-based bacteria type IV secreted effectors prediction
Tài liệu tham khảo
Desvaux, 2009, Secretion and subcellular localiz.ations of bacterial proteins: a semantic awareness issue, Trends Microbiol., 17, 139, 10.1016/j.tim.2009.01.004
Costa, 2015, Secretion systems in Gram-negative bacteria: structural and mechanistic insights, Nat. Rev. Microbiol., 13, 343, 10.1038/nrmicro3456
Gerlach, 2007, Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens, Inter. J. Med. Microbiol.: IJMM, 297, 401, 10.1016/j.ijmm.2007.03.017
Cascales, 2003, The versatile bacterial type IV secretion systems, Nat. Rev. Microbiol., 1, 137, 10.1038/nrmicro753
Fronzes, 2009, The structural biology of type IV secretion systems, Nat. Rev. Microbiol., 7, 703, 10.1038/nrmicro2218
Alvarez-Martinez, 2009, Biological diversity of prokaryotic type IV secretion systems, Microbiol. Mol. Biol. Rev.: MMBR (Microbiol. Mol. Biol. Rev.), 73, 775, 10.1128/MMBR.00023-09
Juhas, 2008, Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence, Cell Microbiol., 10, 2377, 10.1111/j.1462-5822.2008.01187.x
Li, 1999, Essential components of the Ti plasmid trb system, a type IV macromolecular transporter, J. Bacteriol., 181, 5033, 10.1128/JB.181.16.5033-5041.1999
Christie, 2001, Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines, Mol. Microbiol., 40, 294, 10.1046/j.1365-2958.2001.02302.x
Hofreuter, 2001, Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system, Mol. Microbiol., 41, 379, 10.1046/j.1365-2958.2001.02502.x
Ding, 2003, The outs and ins of bacterial type IV secretion substrates, Trends Microbiol., 11, 527, 10.1016/j.tim.2003.09.004
Ward, 2001, The six functions of Agrobacterium VirE2, Proc. Natl. Acad. Sci. U. S. A., 98, 385, 10.1073/pnas.98.2.385
Schroder, 2002, TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates?, J. Bacteriol., 184, 2767, 10.1128/JB.184.10.2767-2779.2002
Hofreuter, 2000, Genetic competence in Helicobacter pylori: mechanisms and biological implications, Res. Microbiol., 151, 487, 10.1016/S0923-2508(00)00164-9
Zou, 2013, Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles, Bioinformatics, 29, 3135, 10.1093/bioinformatics/btt554
Wang, 2014, Prediction of bacterial type IV secreted effectors by C-terminal features, BMC Genomics, 15, 50, 10.1186/1471-2164-15-50
An, 2018, Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI, Briefings Bioinf., 19, 148
Wang, 2017, Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini, J. Comput. Aided Mol. Des., 31, 1029, 10.1007/s10822-017-0080-z
Wang, 2017, Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches, Briefings Bioinf., 10.1093/bib/bbx164
An, 2017, SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems, Sci. Rep., 7, 41031, 10.1038/srep41031
Huang, 2010, A web server for clustering and comparing biological sequences, Bioinformatics, 26, 680, 10.1093/bioinformatics/btq003
UniProt, 2010, The universal protein resource (UniProt) in 2010, Nucleic Acids Res., 38, D142, 10.1093/nar/gkp846
Meyer, 2013, Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context, Nucleic Acids Res., 41, 9218, 10.1093/nar/gkt718
Makino, 2003, Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae, Lancet, 361, 743, 10.1016/S0140-6736(03)12659-1
Vergunst, 2000, VirB/D4-dependent protein translocation from Agrobacterium into plant cells, Science, 290, 979, 10.1126/science.290.5493.979
Simone, 2001, The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system, Mol. Microbiol., 41, 1283, 10.1046/j.1365-2958.2001.02582.x
Vergunst, 2005, Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium, Proc. Natl. Acad. Sci. U. S. A., 102, 832, 10.1073/pnas.0406241102
Marchesini, 2011, In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system, Cell Microbiol., 13, 1261, 10.1111/j.1462-5822.2011.01618.x
Ke, 2015, Type IV secretion system of Brucella spp. and its effectors, Front. Cell. Infect. Microbiol., 5, 72, 10.3389/fcimb.2015.00072
Hubel, 1963, Shape and arrangement of columns in cat's striate cortex, J. Physiol., 165, 559, 10.1113/jphysiol.1963.sp007079
LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539
Angermueller, 2016, Deep learning for computational biology, Mol. Syst. Biol., 12, 878, 10.15252/msb.20156651
Alipanahi, 2015, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 33, 831, 10.1038/nbt.3300
Kelley, 2016, Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks, Genome Res., 26, 990, 10.1101/gr.200535.115
Zhou, 2015, Predicting effects of noncoding variants with deep learning-based sequence model, Nat. Methods, 12, 931, 10.1038/nmeth.3547
Kim, 2018, Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity, Nat. Biotechnol., 36, 239, 10.1038/nbt.4061
Szalkai, 2018, SECLAF: a webserver and deep neural network design tool for hierarchical biological sequence classification, Bioinformatics, 34, 2487, 10.1093/bioinformatics/bty116
Almagro Armenteros, 2017, DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, 33, 3387, 10.1093/bioinformatics/btx431
Veltri, 2018, Deep learning improves antimicrobial peptide recognition, Bioinformatics, 34, 2740, 10.1093/bioinformatics/bty179