A decomposition of Bessel Bridges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Billingsley, P.: Convergence of Probability Measures. New York: J. Wiley 1968
Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431?458 (1957)
Feller, W.: An Introduction to Probability Theory and its Applications, vol. II. New York: Wiley 1966
Getoor, R.K., Sharpe, M.J.: Excursions of Brownian motion and Bessel processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 83?106 (1979)
Hammersley, J.M.: On the statistical loss of long-period comets from the solar system II. Proceedings of the 4th Berkeley Symposium on Math. Statist. and Probab. Volume III, 17?78. Astronomy and Physics. Univ. Calif. (1960)
Itô, K.: Poisson point processes attached to Markov processes. Proc. 6th Berkeley Sympos. on Math. Statist and Probab. Vol. III, 225?239. Univ. Calif. (1970?1971)
Itô, K., McKean, H.P.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965
Jeulin, Th.: Semi-martingales et grossissement d'une filtration. Lect. Notes in Maths. 833. Berlin-Heidelberg-New York: Springer 1980
Jeulin, Th., Yor, M.: Sur les distributions de certaines fonctionnelles du mouvement brownien. Sém. Probas XV. Lect. Notes in Math. 850. Berlin-Heidelberg-New York: Springer 1981
McKean, H.P.: Excursions of a non-singular diffusion. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 230?239 (1963)
Lévy, P.: Wiener's Random Function, and other Laplacian Random Functions. Proc. 2nd Berkeley Sympos. Math. Statist. Probab. Vol. II, 171?186. Univ. Calif. (1950)
Molchanov, S.: Martin boundaries for invariant Markov processes on a solvable group. Theor. Probability Appl. 12, 310?314 (1967)
Petiau, G.: La théorie des fonctions de Bessel. C.N.R.S. (1955)
Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511?526 (1975)
Pitman, J.W., Rogers, L.: Markov functions of Markov processes. Ann. of Probab. 9, 4, 573?582 (1981)
Pitman, J.W., Yor, M.: Bessel processes and infinitely divisible laws, in: ?Stochastic Integrals?, ed. D. Williams. Lect Notes in Mathematics no. 851. Berlin-Heidelberg-New York: Springer 1981
Rogers, L.: Williams characterization of the Brownian excursion law: proof and applications. Sém. Probabilité XV. Lect. Notes in Maths. 850, 227?250. Berlin-Heidelberg-New York: Springer 1981
Shiga, T., Watanabe, S.: Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 27, 37?46 (1973)
Walsh, J.: Excursions and Local Time. Astérisque 52?53, 159?192 (1978)
Watanabe, S.: On time inversion of one-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 115?124 (1975)
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge: University Press 1966
Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. Ser. 3, 28, 738?768 (1974)
Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. 1: Foundations. New York: J. Wiley 1979
Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11, no. 1, 155?167 (1971)