A decomposition of Bessel Bridges

Springer Science and Business Media LLC - Tập 59 Số 4 - Trang 425-457 - 1982
Jim Pitman1, Marc Yor2
1Department of statistics, University of california, Berkeley, USA
2Laboratoire de Calcul des Probabilités, Université Pierre et Marie Curie, Paris Cedex 05, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Billingsley, P.: Convergence of Probability Measures. New York: J. Wiley 1968

Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431?458 (1957)

Feller, W.: An Introduction to Probability Theory and its Applications, vol. II. New York: Wiley 1966

Getoor, R.K., Sharpe, M.J.: Excursions of Brownian motion and Bessel processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 83?106 (1979)

Hammersley, J.M.: On the statistical loss of long-period comets from the solar system II. Proceedings of the 4th Berkeley Symposium on Math. Statist. and Probab. Volume III, 17?78. Astronomy and Physics. Univ. Calif. (1960)

Itô, K.: Poisson point processes attached to Markov processes. Proc. 6th Berkeley Sympos. on Math. Statist and Probab. Vol. III, 225?239. Univ. Calif. (1970?1971)

Itô, K., McKean, H.P.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965

Jeulin, Th.: Semi-martingales et grossissement d'une filtration. Lect. Notes in Maths. 833. Berlin-Heidelberg-New York: Springer 1980

Jeulin, Th., Yor, M.: Sur les distributions de certaines fonctionnelles du mouvement brownien. Sém. Probas XV. Lect. Notes in Math. 850. Berlin-Heidelberg-New York: Springer 1981

McKean, H.P.: Excursions of a non-singular diffusion. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 230?239 (1963)

Lévy, P.: Wiener's Random Function, and other Laplacian Random Functions. Proc. 2nd Berkeley Sympos. Math. Statist. Probab. Vol. II, 171?186. Univ. Calif. (1950)

Molchanov, S.: Martin boundaries for invariant Markov processes on a solvable group. Theor. Probability Appl. 12, 310?314 (1967)

Petiau, G.: La théorie des fonctions de Bessel. C.N.R.S. (1955)

Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511?526 (1975)

Pitman, J.W., Rogers, L.: Markov functions of Markov processes. Ann. of Probab. 9, 4, 573?582 (1981)

Pitman, J.W., Yor, M.: Bessel processes and infinitely divisible laws, in: ?Stochastic Integrals?, ed. D. Williams. Lect Notes in Mathematics no. 851. Berlin-Heidelberg-New York: Springer 1981

Rogers, L.: Williams characterization of the Brownian excursion law: proof and applications. Sém. Probabilité XV. Lect. Notes in Maths. 850, 227?250. Berlin-Heidelberg-New York: Springer 1981

Shepp, L.A.: Radon-Nikodym derivatives of Gaussian measures. Ann. Math. Statist. 37, 321?354 (1966)

Shiga, T., Watanabe, S.: Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 27, 37?46 (1973)

Walsh, J.: Excursions and Local Time. Astérisque 52?53, 159?192 (1978)

Watanabe, S.: On time inversion of one-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 115?124 (1975)

Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge: University Press 1966

Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. Ser. 3, 28, 738?768 (1974)

Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. 1: Foundations. New York: J. Wiley 1979

Williams, D.: Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75, 1035?1036 (1969)

Williams, D.: Decomposing the Brownian path. Bull. Amer. Math. Soc. 76, 871?873 (1970)

Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11, no. 1, 155?167 (1971)

Yor, M.: Loi de l'indice du lacet brownien, et distribution de Hartman-Watson. Z. Wahrscheinlichkeitstheorie verw. Gebiete 53, 71?95 (1980)