A decision support system for heart disease prediction based upon machine learning

Springer Science and Business Media LLC - Tập 7 Số 3 - Trang 263-275 - 2021
Pooja Rani1, Rajneesh Kumar Gujral2, Nada Ahmed3, Anurag Jain4
1MMEC (Research Scholar), MMICT&BM (A.P.), Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, Haryana, 133207, India
2Department of Computer Engineering, MMEC, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, Haryana, 133207, India
3College of Computer Science and Engineering, University of Ha’il, Ha’il, Kingdom of Saudi Arabia
4Virtualization Department, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kumar R, Rani P (2020) Comparative analysis of decision support system for heart disease. Adv Math Sci J 9(6):3349–3356. https://doi.org/10.37418/amsj.9.6.15

Latha CBC, Jeeva SC (2019) Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inf Med Unlocked 16:100203. https://doi.org/10.1016/j.imu.2019.100203

Subhadra K, Vikas B (2019) Neural network based intelligent system for predicting heart disease. Int J Innov Technol Explor Eng 8(5):484–487

Jain A, Tiwari S, Sapra V (2019) Two-phase heart disease diagnosis system using deep learning. Int J Control Autom 12(5):558–573. http://sersc.org/journals/index.php/IJCA/article/view/2690

Coronato A (2018) Engineering high quality medical software: regulations, standards, methodologies and tools for certification. Inst Eng Technol. https://doi.org/10.1049/PBHE012E

Coronato A, Cuzzocrea A (2020) An innovative risk assessment methodology for medical information systems. IEEE Trans Knowl Data Eng 13(9):1–14. https://doi.org/10.1109/TKDE.2020.3023553

Sartori F, Melen R, Lombardi M, Maggiotto D (2019) Virtual round table knights for the treatment of chronic diseases. J Reliab Intell Environ 5(3):131–143. https://doi.org/10.1007/s40860-019-00089-8

Cicotti G (2017) An evidence-based risk-oriented V-model methodology to develop ambient intelligent medical software. J Reliab Intell Environ 3(1):41–53. https://doi.org/10.1007/s40860-017-0039-9

Vithanwattana N, Mapp G, George C (2017) Developing a comprehensive information security framework for mHealth: a detailed analysis. J Reliab Intell Environ 3(1):21–39. https://doi.org/10.1007/s40860-017-0038-x

Jusob FR, George C, Mapp G (2017) Exploring the need for a suitable privacy framework for mHealth when managing chronic diseases. J Reliab Intell Environ 3(4):243–256. https://doi.org/10.1007/s40860-017-0049-7

Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Siswanto BB, Sliwa K, Filippatos G (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1(1):4–25. https://doi.org/10.1002/ehf2.12005

Bashir S, Qamar U, Khan FH, Javed MY (2014) MV5: a clinical decision support framework for heart disease prediction using majority vote based classifier ensemble. Arab J Sci Eng 39(11):7771–7783. https://doi.org/10.1007/s13369-014-1315-0

Olaniyi EO, Oyedotun OK, Adnan K (2015) Heart diseases diagnosis using neural networks arbitration. Int J Intell Syst Appl 7(12):75–82. https://doi.org/10.5815/ijisa.2015.12.08

Verma L, Srivastava S, Negi PC (2016) A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data. J Med Syst 40(7):1–7. https://doi.org/10.1007/s10916-016-0536-z

Verma L, Srivastava S (2016) A data mining model for coronary artery disease detection using noninvasive clinical parameters. Indian J Sci Technol 9(48):1–6. https://doi.org/10.17485/ijst/2016/v9i48/105707

Miranda E, Irwansyah E, Amelga AY, Maribondang MM, Salim M (2016) Detection of cardiovascular disease risk’s level for adults using naive Bayes classifier. Healthc Inf Res 22(3):196–205. https://doi.org/10.4258/hir.2016.22.3.196

Wiharto W, Kusnanto H, Herianto H (2016) Interpretation of clinical data based on C4.5 algorithm for the diagnosis of coronary heart disease. Healthc Inf Res 22(3):186–195. https://doi.org/10.4258/hir.2016.22.3.186

Jabbar MA, Deekshatulu BL, Chandra P (2016) Prediction of heart disease using random forest and feature subset selection. In: Innovations in bio-inspired computing and applications. Springer, Cham, pp 187–196. https://doi.org/10.1007/978-3-319-28031-8_16

Kim JK, Kang S (2017) Neural network-based coronary heart disease risk prediction using feature correlation analysis. J Healthc Eng 2017:1–13. https://doi.org/10.1155/2017/2780501

Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA (2017) Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput Methods Programs Biomed 141:19–26. https://doi.org/10.1016/j.cmpb.2017.01.004

Liu X, Wang X, Su Q, Zhang M, Zhu Y, Wang Q, Wang Q (2017) A hybrid classification system for heart disease diagnosis based on the RFRS method. Comput Math Methods Med 2017:1–11. https://doi.org/10.1155/2017/8272091

Verma L, Srivastava S, Negi PC (2018) An intelligent noninvasive model for coronary artery disease detection. Complex Intell Syst 4(1):11–18. https://doi.org/10.1007/s40747-017-0048-6

David H, Belcy SA (2018) Heart disease prediction using data mining techniques. ICTACT J Soft Comput 9(1):1824–1830. https://doi.org/10.1109/I2C2.2017.8321771

Haq AU, Li JP, Memon MH, Nazir S, Sun R (2018) A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms. Mobile Inf Syst 2018:1–21. https://doi.org/10.1155/2018/3860146

Malav A, Kadam K (2018) A hybrid approach for heart disease prediction using artificial neural network and K-means. Int J Pure Appl Math 118(8):103–110

Poornima V, Gladis D (2018) A novel approach for diagnosing heart disease with hybrid classifier. Biomed Res 29:2274–2280. https://doi.org/10.4066/biomedicalresearch.38-18-434

Khourdifi Y, Bahaj M (2019) Heart disease prediction and classification using machine learning algorithms optimized by Particle Swarm Optimization and Ant Colony Optimization. Int J Intell Eng Syst 12(1):242–252. https://doi.org/10.22266/ijies2019.0228.24

Ali L, Rahman A, Khan A, Zhou M, Javeed A, Khan JA (2019) An automated diagnostic system for heart disease prediction based on Chi square statistical model and optimally configured deep neural network. IEEE Access 7:34938–34945. https://doi.org/10.1109/ACCESS.2019.2904800

Mohan S, Thirumalai C, Srivastava G (2019) Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7:81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707

Ali L, Niamat A, Khan JA, Golilarz NA, Xingzhong X, Noor A, Nour R, Bukhari SAC (2019) An optimized stacked support vector machines based expert system for the effective prediction of heart failure. IEEE Access 7:54007–54014. https://doi.org/10.1109/ACCESS.2019.2909969

Verma L, Mathur MK (2020) Deep learning based model for decision support with case based reasoning. Int J Innov Technol Explor Eng 8(6C):149–153

Mienye ID, Sun Y, Wang Z (2020) Improved sparse autoencoder based artificial neural network approach for prediction of heart disease. Inf Med Unlocked 18:1–5. https://doi.org/10.1016/j.imu.2020.100307

Terrada O, Hamida S, Cherradi B, Raihani A, Bouattane O (2020) Supervised machine learning based medical diagnosis support system for prediction of patients with heart disease. Adv Sci Technol Eng Syst J 5(5):269–277. https://doi.org/10.25046/aj050533

Paragliola G, Coronato A (2020) An hybrid ECG-based deep network for the early identification of high-risk to major cardiovascular events for hypertension patients. J Biomed Inform. https://doi.org/10.1016/j.jbi.2020.103648

Tama BA, Im S, Lee S (2020) Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/9816142

Saez JA, Krawczyk B, Woźniak M (2016) Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recogn 57:164–178. https://doi.org/10.1016/j.patcog.2016.03.012

Detrano R (1989) Long Beach and Cleveland Clinic Foundation. VA Medical Center. http://archive.ics.uci.edu/ml/datasets/Heart+Disease. Accessed 10 Sept 2020

Azur MJ, Stuart EA, Frangakis C, Leaf PJ (2011) Multiple imputation by chained equations: what is it and how does it work. Int J Methods Psychiatr Res 20(1):40–49

Priscila SS, Hemalatha M (2017) Improving the performance of entropy ensembles of neural networks (EENNS) on classification of heart disease prediction. Int J Pure Appl Math 117(7):371–386

Dulhare UN (2018) Prediction system for heart disease using Naive Bayes and particle swarm optimization. Biomed Res 29(12):2646–2649. https://doi.org/10.4066/biomedicalresearch.29-18-620

Rani P, Kumar R, Jain A, Lamba R (2020) Taxonomy of machine learning algorithms and its applications. J Comput Theror Nanosci 17(6):2509–2514. https://doi.org/10.1166/jctn.2020.8922