A decentralized gossip based approach for data clustering in peer-to-peer networks

Journal of Parallel and Distributed Computing - Tập 119 - Trang 64-80 - 2018
Rasool Azimi1, Hedieh Sajedi2
1Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2Department of Computer Science, School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

Tài liệu tham khảo

Azimi, 2017, A novel clustering algorithm based on data transformation approaches, Expert Syst. Appl., 76, 59, 10.1016/j.eswa.2017.01.024 A.R. Barakbah, Y. Kiyoki, A pillar algorithm for k-means optimization by distance maximization for initial centroid designation, in: The IEEE Symposium on Computational Intelligence and Data Mining, Nashville, 2009. P.S. Bradley, U.M. Fayyad, Refining initial points for k-means clustering, in: ICML ’98 Proceedings of the Fifteenth International Conference on Machine Learning, 1998, pp. 91–99. Chen, 2016, Distributed information-based clustering of heterogeneous sensor data, Signal Process., 126, 35, 10.1016/j.sigpro.2015.12.017 Cuzzocrea, 2013, Models and algorithms for high-performance distributed data mining, J. Parallel Distrib. Comput., 73, 281, 10.1016/j.jpdc.2012.11.002 S. Datta, C. Giannella, H. Kargupta, K–means clustering over a large, dynamic network, in: Proc. SIAM Int’l Conf. Data Mining, 2006, pp. 153–164. Datta, 2009, Approximate distributed k-means clustering over a peer-to-peer network, IEEE Trans. Knowl. Data Eng., 21, 1372, 10.1109/TKDE.2008.222 Datta, 2009, Approximate distributed k-means clustering over a peer-to-peer network, IEEE Trans. Knowl. Data Eng., 21, 1372, 10.1109/TKDE.2008.222 Di Fatta, 2013, Fault tolerant decentralised k-means clustering for asynchronous large-scale networks, J. Parallel Distrib. Comput., 73, 317, 10.1016/j.jpdc.2012.09.009 M. Eisenhardt, W. Muller, A. Henrich, Classifying documents by distributed P2P clustering, in: Proceedings of GI Jahrestagung (2), Vol. 35, 2003, pp. 286-291. M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of Knowledge Discovery in Database, KDD, 1996, pp. 226–231. Hubert, 1985, Comparing partitions, J. Classification, 2, 193, 10.1007/BF01908075 Li, 2011, A multi-dimensional trust evaluation model for large-scale P2P computing, J. Parallel Distrib. Comput., 71, 837, 10.1016/j.jpdc.2011.01.007 Lloyd, 1982, Least squares quantization in PCM, IEEE Trans. Inform. Theory, 28, 129, 10.1109/TIT.1982.1056489 MacQueen, 1967, Some methods for classification and analysis of multivariate observations, 281 Malinen, 2014, K-means*: Clustering by gradual data transformation, Pattern Recognit., 47, 3376, 10.1016/j.patcog.2014.03.034 Mashayekhi, 2015, GDCluster: a general decentralized clustering algorithm, IEEE Trans. Knowl. Data Eng., 27, 1892-1905, 10.1109/TKDE.2015.2391123 Mashayekhi, 2013, GoSCAN: Decentralized scalable data clustering, Computing, 95, 759, 10.1007/s00607-012-0264-2 A. Montresor, M. Jelasity, PeerSim: a scalable P2P simulator, in: Proc. of the 9th Int. Conference on Peer-to-Peer, P2P’09, Seattle, USA, Sept. 2009, pp. 99–100. Pena, 1999, An empirical comparison of the initialization methods for the k-means algorithm, Pattern Recognit. Lett., 20, 1027, 10.1016/S0167-8655(99)00069-0 Rougier, 2011, Dynamic self-organising map, Neurocomputing, 74, 1840, 10.1016/j.neucom.2010.06.034 Rousseeuw, 1987, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53, 10.1016/0377-0427(87)90125-7 The University of Eastern Finland, Color Research Laboratory, http://cs.uef.fi/sipu/datasets. Tzortzis, 2014, The minmax k-means clustering algorithm, Pattern Recognit., 47, 2505, 10.1016/j.patcog.2014.01.015 UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets.html . Voulgaris, 2005, CYCLON: Inexpensive membership management for unstructured P2P overlays, J. Netw. Syst. Manage., 13, 10.1007/s10922-005-4441-x Voulgaris, 2007, Proactive gossip-based management of semantic overlay networks, Concurr. Comput.: Pract. Exp., 19, 2299, 10.1002/cpe.1225 W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix factorization, in: Proc. of Int. Conf. on Research and Development in Information Retrieval, 2003, pp. 267–273. Zeng, 2012, Distributed data mining: a survey, Inf. Technol. Manage., 13, 403, 10.1007/s10799-012-0124-y