A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-Hinai AH, Al-Sadi AM, Al-Bahry SN, Mothershaw AS, Al-Said FA et al (2010) Isolation and characterization of Pseudomonas aeruginosa with antagonistic activity against Pythium aphanidermatum. J Plant Pathol 92:653–660
Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 42:W94–W99
Bassarello C, Lazzaroni S, Bifulco G, Cantore P et al (2004) Tolaasins A–E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67:811–816
Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051
Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604
Bonnichsen L, Bygvraa Svenningsen N, Rybtke M et al (2015) Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology 161:2289–2297. https://doi.org/10.1099/mic.0.000191
Burlinson P, Studholme D, Cambray-Young J, Heavens D et al (2013) Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME J 7:1126–1138
Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J (2010) Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int J Syst Evol Microbiol 60:2753–2757. https://doi.org/10.1099/ijs.0.011692-0
Calderón CE, Ramos C, de Vicente A, Cazorla FM (2015) Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant Microbe Interact 28:249–260. https://doi.org/10.1094/MPMI-10-14-0326-FI
Cantore P, Lazzaroni S, Coraiola M, Serra MD, Cafarchia C, Evidente A, Iacobellis NS (2006) Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. MPMI 19:1113–1120
Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480
Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM (2013) Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog 91:e1003101. https://doi.org/10.1371/journal.ppat.1003101
Chen JW, Chin S, Tee KK, Yin WF, Choo YM, Chan KG (2013) N-Acyl homoserine lactone-producing Pseudomonas putida strain T2-2 from human tongue surface. Sensors (Basel) 13:13192–13203. https://doi.org/10.3390/s131013192
Chen Y, Shen X, Peng H, Hu H, Wang W, Zhang X (2015) Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom Data 22:33–42. https://doi.org/10.1016/j.gdata.2015.01.006
Choi C, Münch R, Leupold S, Klein J, Siegel I et al (2007) SYSTOMONAS—an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Res 35:D533–D537
Clifford JC, Buchanan A, Vining O, Kidarsa TA, Chang JH, McPhail KL, Loper JE (2016) Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens. Environ Microbiol 18:3296–3308. https://doi.org/10.1111/1462-2920.13043
de Bruijn MJD, de Kock P, de Waard TA, van Beek Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789
De Maeyer K, D’aes GK, Hua H, Perneel M, Vanhaecke L, Noppe H, Hofte M (2011) N-Acylhomoserine lactone quorum-sensing signaling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157:459–472
Deng P, Wang X, Baird SM, Lu SE (2015) Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato. Stand Genom Sci. https://doi.org/10.1186/s40793-015-0106-x
Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M et al (2016) Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw107
Dhanasekaran AR, Pearson JL, Ganesan B, Weimer BC (2015) Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and metabolites. BMC Bioinform. https://doi.org/10.1186/s12859-015-0462-y
Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904
Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer Pseudomonas chlororaphis O6. Nanotoxicology 6:635–642
Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9:271–278
Djavaheri M, Mercado-Blanco J, Versluis C, Meyer J-M, Loon LC, Bakker PAHM (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. MicrobiologyOpen 1:311–325. https://doi.org/10.1002/mbo3.32
Dunham SJB, Ellis JF, Li B, Sweedler JV (2017) Mass spectrometry imaging of complex microbial communities. Acc Chem Res 50:96–104. https://doi.org/10.1021/acs.accounts.6b00503
Elkins RB, Ingels CA, Lindow SE (2005) Control of fire blight by Pseudomonas fluorescens A506 introduced into unopened pear Flowers. Acta Hortic 671:585–594. https://doi.org/10.17660/actahortic.2005.671.82
Fleurbaaij F, Kraakman MEM, Claas ECJ et al (2016) Typing Pseudomonas aeruginosa isolates with ultrahigh resolution MALDI-FTICR mass spectrometry. Anal Chem 88:5996–6003. https://doi.org/10.1021/acs.analchem.6b01037
Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359
Gao S, Hothersall J, Wu J et al (2014) Biosynthesis of mupirocin by Pseudomonas fluorescens NCIMB 10586 involves parallel pathways. J Am Chem Soc 136:5501–5507. https://doi.org/10.1021/ja501731p
Gao SS, Wang L, Song Z, Hothersall J, Stevens ER et al (2017) Selected mutations reveal new intermediates in the biosynthesis of mupirocin and the thiomarinol antibiotics. Angew Chem Int Ed Engl 56:3930–3934
Garrido-Sanz D, Arrebola E, Martínez-Granero F, García-Méndez S, Muriel C, Blanco-Romero E et al (2017) Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based in group-specific markers. Front Microbiol 8:413. https://doi.org/10.3389/fmicb.2017.00413
Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412
Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 25:6149–6166
Hardebeck GA, Turco RF, Latin R, Reicher ZJ (2004) Application of Pseudomonas aureofaciens Tx-1 through irrigation for control of dollar spot and brown patch on fairway-height turf. HortScience 39:1750–1753
Hashimoto M, Hattori K (1966) Oxypryrrolnitrin: a metabolite of Pseudomonas. Chem Pharm Bull 14:1314–1316
Haug K, Salek RM, Conesa P et al (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1004
Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598
Hennessy RC, Phippen CBW, Nielsen KF, Olsson S, Stougaard P (2017) Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiol Open 6:e516. https://doi.org/10.1002/mbo3.516
Henriksen A, Anthoni U, Nielsen TH, Sørensen J, Christophersen C, Gajhede M (2000) Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strain 96.578. Acta Crystallogr C 56:113–115
Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714
Hummel J, Strehmel N, Metabolomics Selbig J et al (2010) Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomica 6:322
Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61:6786–6791. https://doi.org/10.1021/jf401218w
Jiang Q, Xiao J, Zhou C, Mu Y, Xu B, He Q, Xiao M (2014) Complete genome sequence of the plant growth-promoting rhizobacterium Pseudomonas aurantiaca strain JD37. J Biotechnol 20:85–86
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 44:D353–D361. https://doi.org/10.1093/nar/gkw1092
Kennedy RK, Naik PR, Veena V, Lakshmi BS, Lakshmi P, Krishna R, Sakthivel N (2015) 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact 231:71–82. https://doi.org/10.1016/j.cbi.2015.03.002
Kerr JR (2000) Phenazine pigments: antibiotics and virulence factors. Rev Infect Dis 2:84–194
Khan U, Rahman KM (2015) Seed treatment with bio-fungicides for management of dry root rot of Chick pea caused by Macrophomina phaseolina. Ann Plant Prot Sci 23:302–307
Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81:395–414. https://doi.org/10.1111/j.1365-2958.2011.07697.x
King ZA, Lu JS, Dräger A, Miller PC et al (2016) BiGG models: a platform for integrating, standardizing, and sharing genome-scale models. Nucleic Acids Res 44:D515–D522. https://doi.org/10.1093/nar/gkv1049
Lai Z, Tsugawa H, Wohlgemuth G et al (2017) Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods 15:53–56
Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MGK, Sinnaeve D et al (2013) The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS ONE 8:e62946. https://doi.org/10.1371/journal.pone.0062946
Lim DJ, Yang SY, Noh MY, Lee CW, Kim JC, Kim IS (2017) Identification of lipopeptide xantholysins from Pseudomonas sp. DJ15 and their insecticidal activity against Myzus persicae. J Entomol Res 47:337–343
Liu Y, Lu SE, Baird SM, Qiao J, Du Y (2014) Draft genome sequence of Pseudomonas chlororaphis YL-1, a biocontrol strain suppressing plant microbial pathogens. Genome Announc 2:e01225-13. https://doi.org/10.1128/genomeA.01225-13
Liu K, Hu H, Wang W, Zhang X (2016) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-hydroxyphenazine. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0529-0
Loewen PC, Villenueva J, Fernando WGD, de Kievit T (2014) Genome sequence of Pseudomonas chlororaphis strain PA23. Genome Announc 2:e00689-14. https://doi.org/10.1128/genomeA.00689-14
Loper JE, Henkels MD, Shaffer BT et al (2008) Isolation and identification of rhizoxin analogs from pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093
Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. https://doi.org/10.1371/journal.pgen.1002784
Loper JE, Henkels MD, Rangel LI, Olcott MH et al (2016) Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ Microbiol 18:3509–3521. https://doi.org/10.1111/1462-2920.13369
Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, Höfte M (2016) Biosynthesis, chemical structure and structure–activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00382
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968. https://doi.org/10.1093/bioinformatics/btq054
Matthijs S, Baysse C, Koedam N, Tehrani KA, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B et al (2004) The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384. https://doi.org/10.1111/j.1365-2958.2004.03999.x
McCully LM, Bitzer AS, Spence CA, Bais HP, Silby MW (2014) Draft genome sequence of rice isolate Pseudomonas chlororaphis EA105. Genome Announc 2:e01342-14. https://doi.org/10.1128/genomeA.01342-14
Mehnaz S, Saleem RSZ, Yameen B, Pianet I, Schnakenburg G, Pietraszkiewicz H et al (2013) Lahorenoic acids A–C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J Nat Prod 76:135–141
Mehnaz S, Bauer JS, Gross H (2014) Complete genome sequence of the sugar cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium with antifungal activity toward the plant pathogen Colletotrichum falcatum. Genome Announc 2:e01108–e01113. https://doi.org/10.1128/genomeA.01108-13
Meyer SLF, Halbrendt JM, Carta LK et al (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274–280
Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. mBio 6:00079-15. https://doi.org/10.1128/mbio.00079-15
Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol. https://doi.org/10.1186/1471-2180-12-70
Moree WJ, Phelan VV, Wu C, Bandeira N et al (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. PNAS 109:13811–13816. https://doi.org/10.1073/pnas.1206855109
Morohoshi T, Yamaguchi T, Xie X et al (2017) Complete genome sequence of Pseudomonas chlororaphis subsp. aurantiaca reveals a triplicate quorum-sensing mechanism for regulation of phenazine production. Microbes Environ 32:47–53
Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WGD, Loewen PC et al (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS ONE 10:e0123184. https://doi.org/10.1371/journal.pone.0123184
O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746. https://doi.org/10.1007/s00253-016-7590-9
Olorunleke FE, Kieu NP, Waele ED, Timmerman M, Ongena M, Höfte M (2017) Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. MicrobiologyOpen 6:e499. https://doi.org/10.1002/mbo3.499
Pathma J, Ayyadurai N, Sakthivel N (2010) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. J Microbiol 48:715–727. https://doi.org/10.1007/s12275-010-0064-3
Peng Q, Yi L, Zhou L, Peng Q (2018) Draft genome sequence of the vanadium-leaching bacterium Pseudomonas chlororaphis strain L19. Genome Announc 6:e00966-17. https://doi.org/10.1128/genomeA.00966-17
Phelan VV, Fang J, Dorrestein PC (2015) Mass spectrometry analysis of Pseudomonas aeruginosa treated with azithromycin. J Am Soc Mass Spectrom 26:873–877. https://doi.org/10.1007/s13361-015-1101-6
Philmus B, Shaffer BT, Kidarsa TA, Yan Q et al (2015) Investigations into the biosynthesis, regulation, and self-resistance of toxoflavin in Pseudomonas protegens Pf-5. ChemBioChem 16:1782–1790. https://doi.org/10.1002/cbic.201500247
Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. App Microbiol Biotechnol 86:1659–1670. https://doi.org/10.1007/s00253-010-2509-3
Rokni-Zadeh H, Li W, Yilma E, Sanchez-Rodriguez A, De Mot R (2013) Distinct lipopeptide production systems for WLIP (white line-inducing principle) in Pseudomonas fluorescens and Pseudomonas putida. Environ Microbiol Rep 5:160–169. https://doi.org/10.1111/1758-2229.12015
Ruffner B, Péchy-Tarr M, Höfte M et al (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genom 16:609. https://doi.org/10.1186/s12864-015-1763-2
Samina G, Pavlovab M, Arifa MI et al (2014) A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation. Appl Environ Microbiol 80:5467–5476
Sams T, Baker Y, Hodgkinson J, Gross J, Spring D, Welch M (2016) The Pseudomonas quinolone signal (PQS). Isr J Chem 56:282–294. https://doi.org/10.1002/ijch.201400128
Shahid I, Rizwan M, Baig DN, Saleem RS, Malik KA, Mehnaz S (2017) Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis subsp. aurantiaca strains isolated from cotton, cactus and para grass. J Microbiol Biotechnol 27:480–491
Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711. https://doi.org/10.1111/j.1365-2672.2009.04466.x
Shen X, Chen M, Hu H et al (2012) Genome sequence of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain. J Bacteriol 194:1269–1270. https://doi.org/10.1128/JB.06713-11
Shen X, Wang Z, Huang X, Hu H, Wang W, Zhang X (2017) Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genom 18:715. https://doi.org/10.1186/s12864-017-4127-2
Slininger PJ, Burkhead KD, Schisler DA, Bothast RJ (2000) Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take all biocontrol agent Pseudomonas fluorescens 2–79. App Microbiol Biotechnol 54:376–381
Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751
Sørensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C 57:1123–1124
Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498
Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N (2013) Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ 28:13–24
Thongsri Y, Aromdee C, Yenjai C, Kanokmedhakul S, Chaiprasert A, Hamal Prariyachatigul C (2014) Detection of diketopiperazine and pyrrolnitrin, compounds with anti-Pythium insidiosum activity, in a Pseudomonas stutzeri environmental strain. Biomed Pap 158:378–383
Town J, Audy P, Boyetchko SM, Dumonceaux TJ (2016a) Genome sequence of Pseudomonas chlororaphis strain 189. Genome Announc 4:e00581-16. https://doi.org/10.1128/genomeA.00581-16
Town J, Cui N, Audy P, Boyetchko S, Dumonceaux TJ (2016b) Improved high-quality draft genome sequence of Pseudomonas fluorescens KENGFT3. Genome Announc 3:e00428-16. https://doi.org/10.1128/genomeA.00428-16
Vázquez-Rivera D, González O, Guzmán-Rodríguez J et al (2015) Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. BioMed Res Intern. https://doi.org/10.1155/2015/197608
Vleeschouwer M, Martins JC, Madder A (2016) First total synthesis of WLIP: on the importance of correct protecting group choice. J Pept Sci 22:149–155. https://doi.org/10.1002/psc.2852
Wang D, Yu JM, Dorosky RJ, Pierson LS III, Pierson EA (2016a) The Phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30–84. PLoS ONE 11:e0148003. https://doi.org/10.1371/journal.pone.0148003
Wang M et al (2016b) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837
Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243
Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193
Wells G, Palethorpe S, Pesci EC (2017) PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLoS ONE 12:e0189331. https://doi.org/10.1371/journal.pone.0189331
Yadav G, Gokhale RS, Mohanty D (2003) SEARCHPKS: a program for detection and analysis of polyketide synthase domains. Nucleic Acids Res 31:3654–3658
Yang JY, Phelan VV, Simkovsky R et al (2012) Primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194:6023–6028
Zhang XX, Rainey PB (2013) Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 67:3161–3174. https://doi.org/10.1111/evo.12183