A de novo pathogenic variant in the MSH6 gene in a 52 years-old woman

Elise Pierre-Noël1, Fabrice Airaud1, Estelle Cauchin2,3, Céline Garrec1, Ingrid Ricordeau1, Clémence Michon4, Olivier Kerdraon5, Stéphane Bezieau1, Caroline Abadie2
1Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
2Institut de Cancérologie de l'Ouest, Saint-Herblain, France
3Centre Hospitalier Universitaire de Nantes, Institut des maladies de l’appareil digestif, Nantes, France
4Institut de Cancérologie de l’Ouest, laboratoire d’Oncopharmacologie et pharmacogénétique, Angers, France
5Département de pathologie tissulaire et moléculaire, Institut de Cancérologie de l’Ouest, Saint-Herblain, France

Tóm tắt

Lynch syndrome (LS) is a condition which predisposes individuals primarily to early-onset colorectal and endometrial cancer. LS is characterized by a germline pathogenic variant in one of the MMR (MisMatch Repair) gene, inducing a phenotype of microsatellite instability in the tumor, which may be associated with a loss of expression of MMR proteins detected by standard immunohistochemistry on tumor tissue. Most of the time, LS is inherited from a parent in whom the condition may not be known due to incomplete penetrance, but de novo pathogenic variant is a rare occurrence. Here, we describe the case of a 52-year-old woman with no family history of LS, referred to the genetics department for colorectal cancer at the age of 50. Genetic analysis revealed a de novo germline pathogenic variant in the MSH6 gene. To date, this case is only the second report of a de novo pathogenic variant in the MSH6 gene in Lynch syndrome. De novo mutations have been extensively studied over the past years, but little is known about their origin and mechanism of occurrence in MMR genes. However, knowledge of mutation status allows better cancer risk management for the patient and an appropriate genetic testing and counseling for her family.

Từ khóa


Tài liệu tham khảo

Lynch HT, de la Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36:801–818

Hampel H, Frankel WL, Martin E et al (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 26:5783–5788. https://doi.org/10.1200/JCO.2008.17.5950

Win AK, Jenkins MA, Dowty JG et al (2017) Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 26:404–412. https://doi.org/10.1158/1055-9965.EPI-16-0693

Umar A, Boland CR, Terdiman JP et al (2004) Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268. https://doi.org/10.1093/jnci/djh034

Acuna-Hidalgo R, Veltman JA, Hoischen A (2016) New insights into the generation and role of de novo mutations in health and disease. Genome Biol 17:241. https://doi.org/10.1186/s13059-016-1110-1

McRae Jeremy F, Clayton Stephen (2017) Prevalence and architecture of de novo mutations in developmental disorders. Nature 542:433–438. https://doi.org/10.1038/nature21062

Win AK, Jenkins MA, Buchanan DD et al (2011) Determining the frequency of de novo germline mutations in DNA mismatch repair genes. J Med Genet 48:530–534. https://doi.org/10.1136/jmedgenet-2011-100082

Tesch VK, IJspeert H, Raicht A et al (2018) No overt clinical immunodeficiency despite immune biological abnormalities in patients with constitutional mismatch repair deficiency. Front Immunol 9:1506. https://doi.org/10.3389/fimmu.2018.01506

Hizuka K, Hagiwara S-I, Maeyama T et al (2021) Constitutional mismatch repair deficiency in childhood colorectal cancer harboring a de novo variant in the MSH6 gene: a case report. BMC Gastroenterol 21:60. https://doi.org/10.1186/s12876-021-01646-3

Airaud F, Küry S, Valo I et al (2012) A de novo germline MLH1 mutation in a Lynch syndrome patient with discordant immunohistochemical and molecular biology test results. World J Gastroenterol 18:5635–5639. https://doi.org/10.3748/wjg.v18.i39.5635

Smith L, Tesoriero A, Mead L et al (2006) Large genomic alterations in hMSH2 and hMLH1 in early-onset colorectal cancer: identification of a large complex de novo hMLH1 alteration. Clin Genet 70:250–252. https://doi.org/10.1111/j.1399-0004.2006.00662.x

Stulp RP, Vos YJ, Mol B et al (2006) First report of a de novo germline mutation in the MLH1 gene. World J Gastroenterol 12:809–811. https://doi.org/10.3748/wjg.v12.i5.809

Plasilova M, Zhang J, Okhowat R et al (2006) A de novo MLH1 germ line mutation in a 31-year-old colorectal cancer patient. Genes Chromosomes Cancer 45:1106–1110. https://doi.org/10.1002/gcc.20374

Geurts-Giele WR, Rosenberg EH, Rens A van et al (2019) Somatic mosaicism by a de novo MLH1 mutation as a cause of Lynch syndrome. Mol Genet Genomic Med 7:e00699. https://doi.org/10.1002/mgg3.699

Kraus C, Kastl S, Günther K et al (1999) A proven de novo germline mutation in HNPCC. J Med Genet 36:919–921

Morak M, Laner A, Scholz M et al (2008) Report on de-novo mutation in the MSH2 gene as a rare event in hereditary nonpolyposis colorectal cancer. Eur J Gastroenterol Hepatol 20:1101–1105. https://doi.org/10.1097/MEG.0b013e328305e185

Zajo K, Colace SI, Mouhlas D, Erdman SH (2020) Lynch syndrome-associated colorectal cancer in a 16-year-old girl due to a de novo MSH2 mutation. BMJ Case Rep. https://doi.org/10.1136/bcr-2019-233935

Sourrouille I, Coulet F, Lefevre JH et al (2013) Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer 12:27–33. https://doi.org/10.1007/s10689-012-9568-9

Guillerm E, Svrcek M, Bardier-Dupas A et al (2020) Molecular tumor testing in patients with Lynch-like syndrome reveals a de novo mosaic variant of a mismatch repair gene transmitted to offspring. Eur J Hum Genet EJHG 28:1624–1628. https://doi.org/10.1038/s41431-020-0689-6

Ryan NAJ, Morris J, Green K et al (2017) Association of mismatch repair mutation with age at cancer onset in lynch syndrome: implications for stratified surveillance strategies. JAMA Oncol 3:1702–1706. https://doi.org/10.1001/jamaoncol.2017.0619

Dominguez-Valentin M, Sampson JR, Seppälä TT et al (2020) Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective lynch syndrome database. Genet Med Off J Am Coll Med Genet 22:15–25. https://doi.org/10.1038/s41436-019-0596-9

Renaux-Petel M, Charbonnier F, Théry J-C et al (2018) Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J Med Genet 55:173–180. https://doi.org/10.1136/jmedgenet-2017-104976

Ripa R, Bisgaard ML, Bülow S, Nielsen FC (2002) De novo mutations in familial adenomatous polyposis (FAP). Eur J Hum Genet EJHG 10:631–637. https://doi.org/10.1038/sj.ejhg.5200853

Kong A, Frigge ML, Masson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475. https://doi.org/10.1038/nature11396

Kato MV, Ishizaki K, Shimizu T et al (1994) Parental origin of germ-line and somatic mutations in the retinoblastoma gene. Hum Genet 94:31–38. https://doi.org/10.1007/BF02272838

Carlson KM, Bracamontes J, Jackson CE et al (1994) Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am J Hum Genet 55:1076–1082

Goldmann JM, Wong WSW, Pinelli M et al (2016) Parent-of-origin-specific signatures of de novo mutations. Nat Genet 48:935–939. https://doi.org/10.1038/ng.3597

Goriely A, Wilkie AOM (2012) Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90:175–200. https://doi.org/10.1016/j.ajhg.2011.12.017

Goriely A (2016) Decoding germline de novo point mutations. Nat Genet 48:823–824. https://doi.org/10.1038/ng.3629