A dataset on the physiological state and behavior of drivers in conditionally automated driving
Tài liệu tham khảo
Meteier, Q., Capallera, M., de Salis, E., Angelini, L., Carrino, S., Widmer, M., Abou Khaled, O., Mugellini, E., and Sonderegger, A. (2022). A dataset on the physiological state and behavior of drivers in conditionally automated driving. doi:10.5281/zenodo.7214953.
Makowski, D., Pham, T., Lau, Z.J., Brammer, J.C., Lespinasse, F., Hung, P.T., Schölzel, C., & Chen, S.A. (2021). NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods.
Taylor, R.M. (2017). Situational awareness rating technique (SART): The development of a tool for aircrew systems design.
Hart, 1988, Development of NASA-TLX (Task Load Index): results of empirical and theoretical research, Adv. Psychol., 52, 139, 10.1016/S0166-4115(08)62386-9
Berger, 2021, Comparison of different response time outlier exclusion methods: a simulation study, Front. Psychol., 12
Meteier, 2022, Carrying a passenger and relaxation before driving: classification of young drivers’ physiological activation, Physiol. Rep., 10, e15229, 10.14814/phy2.15229
Janke, S., & Glöckner-Rist, A. (2012). Deutsche version der positive and negative affect schedule (PANAS). Zusammenstellung sozialwissenschaftlicher Items und Skalen (ZIS). doi:10.6102/zis146.
Kirk, R.E. (1969). Experimental design: procedures for the behavioral sciences.
Meteier, 2021, Classification of Drivers' workload using physiological signals in conditional automation, Front. Psychol., 12
Meteier, Q., Capallera, M., de Salis, E., Angelini, L., Carrino, S., Abou Khaled, O., Mugellini, E, and Sonderegger, A. (2022). Effect of obstacle type and cognitive task on Drivers' situation awareness and takeover performance in conditionally automated driving. 34eme conference internationale francophone sur l'Interaction Homme-Machine. IHM'23 (In press).
Meteier, 2021, Relevant physiological indicators for assessing workload in conditionally automated driving, through three-class classification and regression, Front. Comput. Sci., 3
Meteier, 2020, The effect of instructions and context-related information about limitations of conditionally automated vehicles on situation awareness
Jian, 2000, Foundations for an empirically determined scale of trust in automated systems, Int. J. Cognit. Ergonom., 4, 53, 10.1207/S15327566IJCE0401_04
Schrepp, 2017, Design and evaluation of a short version of the user experience questionnaire (UEQ-S), Int. J. Interact. Multim. Artif. Intell., 4, 103
Åkerstedt, 1990, Subjective and objective sleepiness in the active individual, Int. J. Neurosci, 52, 29, 10.3109/00207459008994241
Sonderegger, 2016, AniSAM & AniAvatar: animated visualizations of affective states
Holthausen, 2020, Situational trust scale for automated driving (STS-AD): development and initial validation
de Salis, E., Meteier, Q., Capallera, M., Pelletier, C., Angelini, L., Abou Khaled, O., Mugellini, E., Widmer, M., & Carrino, S. (2022). Predicting takeover quality in conditionally autonomous vehicles based on takeover request modalities, driver physiological state and the environment. intelligent human systems integration (IHSI 2022) integrating people and intelligent systems.
Capallera, 2023, A contextual multimodal system for increasing situation awareness and takeover quality in conditionally automated driving, IEEE Access, 11, 5746, 10.1109/ACCESS.2023.3236814