A data-driven and model-based accelerated Hamiltonian Monte Carlo method for Bayesian elliptic inverse problems

Sijing Li1, Cheng Zhang2, Zhiwen Zhang3, Hongkai Zhao4
1Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China
2School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
3Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
4Department of Mathematics, Duke University, Durham, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdulle, A., Barth, A., Schwab, C.: Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11, 1033–1070 (2013)

Asokan, B.V., Zabaras, N.: A stochastic variational multiscale method for diffusion in heterogeneous random media. J. Comput. Phys. 218, 654–676 (2006)

Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

Bachmayr, M., Cohen, A., DeVore, R., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs, Part II: lognormal coefficients. ESAIM: Math. Model. Numer. Anal. 51, 341–363 (2017)

Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339(9), 667–672 (2004)

Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

Beskos, A., Jasra, A., Muzaffer, E., Stuart, A.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems. Stat. Comput. 25, 727–737 (2015)

Bryson, J., Zhao, H., Zhong, Y.: Intrinsic complexity and scaling laws: from random fields to random vectors. SIAM Multiscale Model. Simul. 17(1), 460–481 (2019)

Chung, E., Efendiev, Y., Leung, W., Zhang, Z.: Cluster-based generalized multiscale finite element method for elliptic PDEs with random coefficients. J. Comput. Phys. 371, 606–617 (2018)

Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015)

Dashti, M., Stuart, A.: Uncertainty quantification and weak approximation of an elliptic inverse problem. SIAM J. Numer. Anal. 49, 2524–2542 (2011)

Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195, 216–222 (1987)

Efendiev, Y., Kronsbein, C., Legoll, F.: Multilevel Monte Carlo approaches for numerical homogenization. Multiscale Model. Simul. 13, 1107–1135 (2015)

Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York (1991)

Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc.: Series B (Stat. Methodol.) 73(2), 123–214 (2011)

Givoli, D.: A tutorial on the adjoint method for inverse problems. Comput. Methods Appl. Mech. Eng. 380, 113810 (2021)

Graham, I., Kuo, F., Nuyens, D., Scheichl, R., Sloan, I.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131(2), 329–368 (2015)

Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 (2016)

Hoang, V., Schwab, C.: N-term wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24, 797–826 (2014)

Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1998)

Hou, T., Liu, P., Zhang, Z.: A localized data-driven stochastic method for elliptic PDEs with random coefficients. Bull. Inst. Math. Acad. Sin. 1, 179–216 (2016)

Hou, T., Ma, D., Zhang, Z.: A model reduction method for multiscale elliptic PDEs with random coefficients using an optimization approach. Multiscale Model. Simul. 17, 826–853 (2019)

Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, New York (2005)

Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, (2014)

Lan, S.: Adaptive dimension reduction to accelerate infinite-dimensional geometric Markov Chain Monte Carlo. J. Comput. Phys. 392, 71–95 (2019)

Lan, S., Bui-Thanh, T., Christie, M., Girolami, M.: Emulation of higher-order tensors in mainifold Monte Carlo methods for Bayesian inverse problems. J. Comput. Phys. 308, 81–101 (2016)

Li, S., Zhang, Z., Zhao, H.: A data-driven approach for multiscale elliptic PDEs with random coefficients based on intrinsic dimension reduction. SIAM J. Multiscale Model. Simul. 18(3), 1242–1271 (2020)

Martin, J., Wilcox, L., Burstedde, C., Ghattas, O.: A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34, A1460–A1487 (2012)

Mondal, A., Efendiev, Y., Mallick, B., Datta-Gupta, A.: Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods. Adv. Water Resour. 33, 241–256 (2010)

Natterer, F.: Adjoint methods as applied to inverse problems. Encyclopedia Appl. Comput. Math. 1, 33–36 (2015)

Neal, R.M.: MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2, 2 (2011)

Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

Schwab, C., Todor, R.A.: Karhunen loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217(1), 100–122 (2006)

Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

Strathmann, H., Sejdinovic, D., Livingstone, S., Szabo, Z., Gretton, A.: Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families. In: Advances in Neural Information Processing Systems, pp 955–963 (2015)

Stuart, A.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

Wald, I., Havran, V.: On building fast kd-trees for ray tracing, and on doing that in O (N log N). In: 2006 IEEE Symposium on Interactive Ray Tracing, IEEE, pp 61–69 (2006)

Wan, J., Zabaras, N.: A probabilistic graphical model approach to stochastic multiscale partial differential equations. J. Comput. Phys. 250, 477–510 (2013)

Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

Zhang, C., Shahbaba, B., Zhao, H.: Hamiltonian Monte Carlo acceleration using surrogate functions with random bases. Stat. Comput. 27(6), 1473–1490 (2017)

Zhang, C., Shahbaba, B., Zhao, H.: Precomputing strategy for Hamiltonian Monte Carlo method base on regularity in parameter space. Comput. Stat. 32, 253–279 (2017)

Zhang, C., Shahbaba, B., Zhao, H.: Variational Hamiltonian Monte Carlo via score matching. Bayesian Anal. 13(2), 485–506 (2018)

Zhang, Z., Ci, M., Hou, T.Y.: A multiscale data-driven stochastic method for elliptic PDEs with random coefficients. SIAM Multiscale Model. Simul. 13, 173–204 (2015)