A cyclodextrin-based approach for selective detection of catecholamine hormone mixtures

Micro and Nano Systems Letters - Tập 2 - Trang 1-10 - 2014
Jung-Hoon Yang1, Hyun Tae Kim1, Hanseup Kim1
1Electrical and Computer Engineering, University of Utah, Salt Lake City, USA

Tóm tắt

This paper presents an electrochemical sensing approach that enables quantitative detection of three major catecholamine hormones from a mixture by specifically employing a chemically-modified microelectrode array with α-, β- and γ-cyclodextrin (CD) ‘catchers’ holding unique physical matching (size and shape) as well as chemical enticing (stereochemistry and surface charge) properties. The developed neurotransmitter sensor has selectively identified L-tyrosine, dihydroxyphenylalanine (L-DOPA) and dopamine in the absence of ascorbic acid. It exhibited the relatively linear sensitivities to each neurotransmitter with logarithmically increasing concentrations range of 5μM-10mM, while demonstrating stability up to 6 hours from the fabrication and the average accuracy of 91.2%.

Tài liệu tham khảo

Alzheimer’s Association (2012) Alz.org, Alzheimer’s fact sheet. : .Available from: , [http://www.alz.org/documents_custom/2012_facts_figures_fact_sheet.pdf] Parkinson’s Disease Foundation (2010) Parkinson’s fact sheet. : .Available from: , [http://www.pdf.org/pdf/fs_frequently_asked_questions_10.pdf] National Institute of Neurological Disorders and Stroke. (ᅟ) ALS(Amyotrophic Lateral Sclerosis) fact sheet, Huntington’s disease: hope through research. : .Available from: , [http://www.ninds.nih.gov/disorders/huntington/detail_huntington.htm] Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM: Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2002, 157: 1015–1022. 10.1093/aje/kwg068 De Lau LML, Breteler MMB: Epidemiology of Parkinson's disease. Lancet Neurol 2006, 5: 525–535. 10.1016/S1474-4422(06)70471-9 Administration on Aging (ᅟ) Older population by age group: 1900–2050 with persons +65. : .Available from: , [http://www.aoa.gov/AoARoot/Aging_Statistics/future_growth/future_growth.aspx#age] Dauer W, Przedborski S: Parkinson's disease: mechanisms and models. Neuron 2003, 39: 889–909. 10.1016/S0896-6273(03)00568-3 Arias-Carrion O, Poppel E: Dopamine, learning, and reward-seeking behavior. Act Neurobiol Exp 2007, 67: 481–488. Shulman JM, De Jager PL, Feany MB: Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol Mech Dis 2011, 6: 193–222. 10.1146/annurev-pathol-011110-130242 Zhao H, Zhang Y, Yuan Z: Study on the electrochemical behavior of dopamine with poly (sulfosalicylic acid) modified glassy carbon electrode. Anal Chim Acta 2001, 441: 117–122. 10.1016/S0003-2670(01)01086-8 Hjemdahl P: Catecholamine measurements by high-performance liquid chromatography. Am J Physiol 1984, 247: E13-E20. Bouchta D, Izaoumen N, Zejli H, Kaoutit ME, Temsamani KR: A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film: Application for the analysis of chlorpromazine and some neurotransmitters. Biosen Bioelectron 2005, 20: 2228–2235. 10.1016/j.bios.2004.12.004 Majewska UE, Chmurski K, Biesiada K, Olszyna AR, Bilewicz R: Dopamine oxidation at per (6–‐deoxy–‐6–‐thio)–‐α–‐cyclodextrin monolayer modified gold electrodes. Electroanalysis 2006, 18: 1463–1470. 10.1002/elan.200603556 Alarcón-Angeles G, Pérez-López B, Palomar-Pardave M, Ramírez-Silva MT, Alegret S, Merkoçi A: Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 2008, 46: 898–906. 10.1016/j.carbon.2008.02.025 Yang J-H, Park JW, Kim H: Simultaneous detection of catecholamine neurotransmitters utilizing a cyclodextrin-based micro electrode array. MicroTAS 2010, 2010: 599–601. Yang J-H, Kim H-T, Park JW, Kim H: Cyclodextrin-based micro neurotransmitter sensor for selective catecholamine hormone detection. Transducers 2011, 2011: 2102–2105. Tang H, Lin P, Chan HLW, Yan F: Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosen Bioelectron 2011, 26: 4559–4563. 10.1016/j.bios.2011.05.025 Pagel P, Blome J, Wolf HU: High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease. J Chromatogr B 2000, 746: 297–304. 10.1016/S0378-4347(00)00348-0 Wood AT, Hall MR: Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. J Chromatogr B 2000, 744: 221–225. 10.1016/S0378-4347(00)00249-8 Wang HY, Sun Y, Tang B: Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 2002, 57: 899–907. 10.1016/S0039-9140(02)00123-6 Balaji J, Reddy CS, Kaushalya SK, Maiti S: Microfluorometric detection of catecholamines with multiphoton-excited fluorescence. Appl Optics 2004, 43: 2412–2417. 10.1364/AO.43.002412 Tsunoda M, Takezawa K, Santa T, Imai K: Simultaneous automatic determination of catecholamines and their 3-o-methyl metabolites in rat plasma by high-performance liquid chromatography using peroxyoxalate chemiluminescence reaction. Anal Biochem 1999, 269: 386–392. 10.1006/abio.1999.4043 Ragab GH, Nohta H, Zaitsu K: Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)ethylenediamine as pre-column derivatizing reagent for liquid chromatography. Anal Chim Acta 2000, 403: 155–160. 10.1016/S0003-2670(99)00637-6 Nalewajko E, Wiszowata A, Kojli A: Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection. J Pharm Biomed Anal 2007, 43: 1673–1681. 10.1016/j.jpba.2006.12.021 Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ: High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 2004, 138: 123–132. 10.1016/j.jneumeth.2004.03.021 Tsunoda M: Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 2006, 386: 506–514. 10.1007/s00216-006-0675-z Ferancova A, Korgova E, Labuda J, Zima J, Barek J: Cyclodextrin modified carbon paste based electrodes as sensors for the determination of carcinogenic polycyclic aromatic amines. Electroanalysis 2002, 23: 1668–1673. 10.1002/elan.200290009 Bouzitoun M, Mlika R, Gam H, Ouada HB, Majdoub M, Sfihi H: A non-water-soluble modified β-cyclodextrin for sensitive electrode. Mater Sci Eng C 2006, 26: 481–485. 10.1016/j.msec.2005.10.065 Li W, Jin G, Chen H, Kong J: Highly sensitive and reproducible cyclodextrin-modified gold electrodes for probing trace lead in blood. Talanta 2009, 78: 717–722. 10.1016/j.talanta.2008.12.030 Tredici I, Merli D, Zavarise F, Profumo A: α-Cyclodextrins chemically modified gold electrode for the determination of nitroaromatic compounds. J Electroanal Chem 2010, 645: 22–27. 10.1016/j.jelechem.2010.03.036 Fukuda T, Maeda Y, Kitano H: Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 1999, 15: 1887–1890. 10.1021/la981269n Fragoso A, Almirall E, Cao R, Echegoyen L, González-Jonte R: A supramolecular approach to the selective detection of dopamine in the presence of ascorbate. Chem Commun 2004, 19: 2230–2231. 10.1039/b407792j Palomar-Pardavé M, Alarcón-Ángeles G, Ramírez-Silva MT: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 2011, 69: 91–99. 10.1007/s10847-010-9818-0