A cyclodextrin-based approach for selective detection of catecholamine hormone mixtures
Tóm tắt
This paper presents an electrochemical sensing approach that enables quantitative detection of three major catecholamine hormones from a mixture by specifically employing a chemically-modified microelectrode array with α-, β- and γ-cyclodextrin (CD) ‘catchers’ holding unique physical matching (size and shape) as well as chemical enticing (stereochemistry and surface charge) properties. The developed neurotransmitter sensor has selectively identified L-tyrosine, dihydroxyphenylalanine (L-DOPA) and dopamine in the absence of ascorbic acid. It exhibited the relatively linear sensitivities to each neurotransmitter with logarithmically increasing concentrations range of 5μM-10mM, while demonstrating stability up to 6 hours from the fabrication and the average accuracy of 91.2%.
Tài liệu tham khảo
Alzheimer’s Association (2012) Alz.org, Alzheimer’s fact sheet. : .Available from: , [http://www.alz.org/documents_custom/2012_facts_figures_fact_sheet.pdf]
Parkinson’s Disease Foundation (2010) Parkinson’s fact sheet. : .Available from: , [http://www.pdf.org/pdf/fs_frequently_asked_questions_10.pdf]
National Institute of Neurological Disorders and Stroke. (ᅟ) ALS(Amyotrophic Lateral Sclerosis) fact sheet, Huntington’s disease: hope through research. : .Available from: , [http://www.ninds.nih.gov/disorders/huntington/detail_huntington.htm]
Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM: Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2002, 157: 1015–1022. 10.1093/aje/kwg068
De Lau LML, Breteler MMB: Epidemiology of Parkinson's disease. Lancet Neurol 2006, 5: 525–535. 10.1016/S1474-4422(06)70471-9
Administration on Aging (ᅟ) Older population by age group: 1900–2050 with persons +65. : .Available from: , [http://www.aoa.gov/AoARoot/Aging_Statistics/future_growth/future_growth.aspx#age]
Dauer W, Przedborski S: Parkinson's disease: mechanisms and models. Neuron 2003, 39: 889–909. 10.1016/S0896-6273(03)00568-3
Arias-Carrion O, Poppel E: Dopamine, learning, and reward-seeking behavior. Act Neurobiol Exp 2007, 67: 481–488.
Shulman JM, De Jager PL, Feany MB: Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol Mech Dis 2011, 6: 193–222. 10.1146/annurev-pathol-011110-130242
Zhao H, Zhang Y, Yuan Z: Study on the electrochemical behavior of dopamine with poly (sulfosalicylic acid) modified glassy carbon electrode. Anal Chim Acta 2001, 441: 117–122. 10.1016/S0003-2670(01)01086-8
Hjemdahl P: Catecholamine measurements by high-performance liquid chromatography. Am J Physiol 1984, 247: E13-E20.
Bouchta D, Izaoumen N, Zejli H, Kaoutit ME, Temsamani KR: A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film: Application for the analysis of chlorpromazine and some neurotransmitters. Biosen Bioelectron 2005, 20: 2228–2235. 10.1016/j.bios.2004.12.004
Majewska UE, Chmurski K, Biesiada K, Olszyna AR, Bilewicz R: Dopamine oxidation at per (6–‐deoxy–‐6–‐thio)–‐α–‐cyclodextrin monolayer modified gold electrodes. Electroanalysis 2006, 18: 1463–1470. 10.1002/elan.200603556
Alarcón-Angeles G, Pérez-López B, Palomar-Pardave M, Ramírez-Silva MT, Alegret S, Merkoçi A: Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 2008, 46: 898–906. 10.1016/j.carbon.2008.02.025
Yang J-H, Park JW, Kim H: Simultaneous detection of catecholamine neurotransmitters utilizing a cyclodextrin-based micro electrode array. MicroTAS 2010, 2010: 599–601.
Yang J-H, Kim H-T, Park JW, Kim H: Cyclodextrin-based micro neurotransmitter sensor for selective catecholamine hormone detection. Transducers 2011, 2011: 2102–2105.
Tang H, Lin P, Chan HLW, Yan F: Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosen Bioelectron 2011, 26: 4559–4563. 10.1016/j.bios.2011.05.025
Pagel P, Blome J, Wolf HU: High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease. J Chromatogr B 2000, 746: 297–304. 10.1016/S0378-4347(00)00348-0
Wood AT, Hall MR: Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. J Chromatogr B 2000, 744: 221–225. 10.1016/S0378-4347(00)00249-8
Wang HY, Sun Y, Tang B: Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 2002, 57: 899–907. 10.1016/S0039-9140(02)00123-6
Balaji J, Reddy CS, Kaushalya SK, Maiti S: Microfluorometric detection of catecholamines with multiphoton-excited fluorescence. Appl Optics 2004, 43: 2412–2417. 10.1364/AO.43.002412
Tsunoda M, Takezawa K, Santa T, Imai K: Simultaneous automatic determination of catecholamines and their 3-o-methyl metabolites in rat plasma by high-performance liquid chromatography using peroxyoxalate chemiluminescence reaction. Anal Biochem 1999, 269: 386–392. 10.1006/abio.1999.4043
Ragab GH, Nohta H, Zaitsu K: Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)ethylenediamine as pre-column derivatizing reagent for liquid chromatography. Anal Chim Acta 2000, 403: 155–160. 10.1016/S0003-2670(99)00637-6
Nalewajko E, Wiszowata A, Kojli A: Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection. J Pharm Biomed Anal 2007, 43: 1673–1681. 10.1016/j.jpba.2006.12.021
Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ: High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 2004, 138: 123–132. 10.1016/j.jneumeth.2004.03.021
Tsunoda M: Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 2006, 386: 506–514. 10.1007/s00216-006-0675-z
Ferancova A, Korgova E, Labuda J, Zima J, Barek J: Cyclodextrin modified carbon paste based electrodes as sensors for the determination of carcinogenic polycyclic aromatic amines. Electroanalysis 2002, 23: 1668–1673. 10.1002/elan.200290009
Bouzitoun M, Mlika R, Gam H, Ouada HB, Majdoub M, Sfihi H: A non-water-soluble modified β-cyclodextrin for sensitive electrode. Mater Sci Eng C 2006, 26: 481–485. 10.1016/j.msec.2005.10.065
Li W, Jin G, Chen H, Kong J: Highly sensitive and reproducible cyclodextrin-modified gold electrodes for probing trace lead in blood. Talanta 2009, 78: 717–722. 10.1016/j.talanta.2008.12.030
Tredici I, Merli D, Zavarise F, Profumo A: α-Cyclodextrins chemically modified gold electrode for the determination of nitroaromatic compounds. J Electroanal Chem 2010, 645: 22–27. 10.1016/j.jelechem.2010.03.036
Fukuda T, Maeda Y, Kitano H: Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 1999, 15: 1887–1890. 10.1021/la981269n
Fragoso A, Almirall E, Cao R, Echegoyen L, González-Jonte R: A supramolecular approach to the selective detection of dopamine in the presence of ascorbate. Chem Commun 2004, 19: 2230–2231. 10.1039/b407792j
Palomar-Pardavé M, Alarcón-Ángeles G, Ramírez-Silva MT: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 2011, 69: 91–99. 10.1007/s10847-010-9818-0