A critical review of high entropy alloys and related concepts

Acta Materialia - Tập 122 - Trang 448-511 - 2017
Yoshihiko Yokoyama1, O.N. Senkov1,2
1AF Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH, USA
2UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257

Chen, 2004, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 188–189, 193, 10.1016/j.surfcoat.2004.08.023

Hsu, 2004, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A, 35A, 1465, 10.1007/s11661-004-0254-x

Huang, 2004, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6, 74, 10.1002/adem.200300507

Yeh, 2004, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35A, 2533, 10.1007/s11661-006-0234-4

Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567

Pickering, 2016, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev., 61, 183, 10.1080/09506608.2016.1180020

Florea, 2013, High entropy alloys, J. Optoelectron. Adv. Mater., 15, 761

Kozak, 2015, Single-phase high-entropy alloys - an overview, Z. Krist., 230, 55

Tsai, 2013, Physical Properties of High Entropy Alloys, Entropy, 15, 5338, 10.3390/e15125338

Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mat. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001

Bhadeshia, 2015, High Entropy Alloys, Mat. Sci. Technol., 31, 1139, 10.1179/0267083615Z.000000000969

Gao, 2013, Progress in High-Entropy Alloys, JOM, 65, 1749, 10.1007/s11837-013-0788-8

Gao, 2014, Progress in High Entropy Alloys, JOM, 66, 1964, 10.1007/s11837-014-1136-3

Gao, 2015, Progress in High Entropy Alloys, JOM, 67, 2251, 10.1007/s11837-015-1609-z

Gao, 2016

Murty, 2014

Smith, 1963

Cantor, 2002, Novel multicomponent amorphous alloys, Mater. Sci. Forum, 386–388, 27, 10.4028/www.scientific.net/MSF.386-388.27

Ranganathan, 2003, Alloyed pleasures: Multimetallic cocktails, Curr. Sci., 85, 1404

Yeh, 2006, Recent Progress in High Entropy Alloys, Ann. Chim. Sci. Mat., 31, 633, 10.3166/acsm.31.633-648

Tomlin, 2015, ‘High entropy alloys’—‘semi-impossible’ regular solid solutions?, Mat. Sci. Technol., 31, 1231, 10.1179/1743284715Y.0000000028

Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014

Senkov, 2011, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19, 698, 10.1016/j.intermet.2011.01.004

Miracle, 2014, Exploration and development of high entropy alloys for structural applications, Entropy, 16, 494, 10.3390/e16010494

Miracle, 2015, Critical Assessment 14: High entropy alloys and their development as structural materials, Mat. Sci. Technol., 31, 1142, 10.1179/1743284714Y.0000000749

Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581

Tiwary, 2014, Intermetallic eutectic alloys in the Ni-Al-Zr system with attractive high temperature properties

Guo, 2011, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505, 10.1063/1.3587228

1998

Miracle, 2016, New strategies and tests to accelerate discovery and development of multi-principal element structural alloys, Scr. Mater

Tsai, 2013, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater, 61, 4887, 10.1016/j.actamat.2013.04.058

Ranganathan, 2015

Saito, 2003, Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism, Science, 300, 464, 10.1126/science.1081957

Open Quantum Materials Database. http://oqmd.org/analysis/phase_diagram/.

Saal, 2013, Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD), JOM, 65, 1501, 10.1007/s11837-013-0755-4

Zhang, 2012, Computational Thermodynamics Aided High-Entropy Alloy Design, JOM, 64, 839, 10.1007/s11837-012-0365-6

Senkov, 2013, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Mater, 61, 1545, 10.1016/j.actamat.2012.11.032

2016

Hillert, 2008

Lukas, 2007

Gaskell, 1995

Lupis, 1983

Porter, 1984

Takeuchi, 2010, Mixing enthalpy of liquid phase calculated by Miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18, 1779, 10.1016/j.intermet.2010.06.003

Guo, 2011, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci., 21, 433, 10.1016/S1002-0071(12)60080-X

Guo, 2013, Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions, Chin. J. Nat., 35, 85

Yang, 2012, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132, 233, 10.1016/j.matchemphys.2011.11.021

Zhang, 2008, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, 534, 10.1002/adem.200700240

Zhang, 2014, An understanding of high entropy alloys from phase diagram calculations, Calphad, 45, 1, 10.1016/j.calphad.2013.10.006

Lucas, 2012, Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100, 10.1063/1.4730327

Hultgren, 1963

Kubaschewski, 1956

de Boer, 1989

2002

Senkov, 2015, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50, 32, 10.1016/j.calphad.2015.04.009

1993

Westbrook, 1995

Santodonato, 2015, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6, 5964, 10.1038/ncomms6964

Miracle, 2011, The strength of chemical bonds in solids and liquids, Acta Mater, 59, 7840, 10.1016/j.actamat.2011.09.003

Colinet, 1995, The thermodynamic properties of rare earth metallic systems, J. Alloys Compd., 225, 409, 10.1016/0925-8388(94)07087-3

Fries, 1998, Compilation of 'CALPHAD' formation enthalpy data: Binary intermetallic compounds in the COST 507 Gibbsian database, Thermochim. Acta, 314, 23, 10.1016/S0040-6031(97)00478-4

Guo, 1998, Standard enthalpies of formation of some alloys formed between group IV elements and group VIII elements, determined by high-temperature direct synthesis calorimetry II. Alloys of (Ti,Zr,Hf) with (Co,Ni), J. Alloys Compd., 269, 181, 10.1016/S0925-8388(98)00246-1

Guo, 2001, The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago - A review, J. Alloys Compd., 321, 169, 10.1016/S0925-8388(01)00956-2

Kubaschewski, 1993

Dominguez, 2015, Prediction and validation of quaternary high entropy alloys using statistical approaches, Mat. Sci. Technol., 31, 1201, 10.1179/1743284715Y.0000000019

Takeuchi, 2014, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66, 1984, 10.1007/s11837-014-1085-x

Tong, 2005, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36A, 1263, 10.1007/s11661-005-0218-9

Zhu, 2010, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527, 6975, 10.1016/j.msea.2010.07.028

Zhu, 2010, Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys, Mater. Sci. Eng. A, 527, 7210, 10.1016/j.msea.2010.07.049

Zhu, 2011, Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, J. Alloys Compd., 509, 3476, 10.1016/j.jallcom.2010.10.047

Mansoori, 1971, Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres, J. Chem. Phys., 54, 1523, 10.1063/1.1675048

Takeuchi, 2000, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. JIM, 41, 1372, 10.2320/matertrans1989.41.1372

Villars, 1991

Miracle, 2012, Partial coordination numbers in binary metallic glasses, Metall. Mater. Trans. A, 43A, 2649, 10.1007/s11661-011-1002-7

Anthony, 1994, Magnitude and origin of the difference in vibrational entropy between ordered and disordered Fe3AI, Phys. Rev. Lett., 73, 3034, 10.1103/PhysRevLett.73.3034

Swan-Wood, 2005, Vibrational entropy of spinodal decomposition in FeCr, Phys. Rev. B, 72, 10.1103/PhysRevB.72.024305

van de Walle, 2002, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys., 74, 11, 10.1103/RevModPhys.74.11

Senkov, 2016, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys, J. Alloys Cmpds., 658, 603, 10.1016/j.jallcom.2015.10.279

1985

Winter, 2015, vol. 2015

Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Lett., 2, 107, 10.1080/21663831.2014.912690

Yeh, 2007, High-entropy alloys - a new era of exploitation, Mater. Sci. Forum, 560, 1, 10.4028/www.scientific.net/MSF.560.1

Zhang, 2012, Alloy design and properties optimization of high-entropy alloys, JOM, 64, 830, 10.1007/s11837-012-0366-5

Couzinie, 2014, Microstructure of a near-equimolar refractory high-entropy alloy, Mater. Lett., 126, 285, 10.1016/j.matlet.2014.04.062

Fazakas, 2014, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater., 47, 131, 10.1016/j.ijrmhm.2014.07.009

Gao, 2013, Searching for next single-phase high-entropy alloy compositions, Entropy, 15, 4504, 10.3390/e15104504

del Grosso, 2012, Determination of the transition to the high entropy regime for alloys of refractory elements, J. Alloys Compd., 534, 25, 10.1016/j.jallcom.2012.04.053

del Grosso, 2012, Modeling of high entropy alloys of refractory elements, Phys. B-Condens. Matter, 407, 3285, 10.1016/j.physb.2011.12.088

Lei, 2012, 196

Lilensten, 2014, New structure in refractory high-entropy alloys, Mater. Lett., 132, 123, 10.1016/j.matlet.2014.06.064

Liu, 2014, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd., 583, 162, 10.1016/j.jallcom.2013.08.102

Senkov, 2012, Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J. Mater. Sci., 47, 6522, 10.1007/s10853-012-6582-0

Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high entropy alloys, Acta Mater, 68, 214, 10.1016/j.actamat.2014.01.029

Senkov, 2014, Microstructure and properties of aluminum-containing refractory high-entropy alloys, JOM, 66, 2030, 10.1007/s11837-014-1066-0

Senkov, 2011, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A, 529, 311, 10.1016/j.msea.2011.09.033

Senkov, 2013, Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: comparison of experimental and simulated data, Entropy, 15, 3769, 10.3390/e15093796

Tian, 2014, Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys, J. Alloys Compd., 599, 19, 10.1016/j.jallcom.2014.01.237

Widom, 2014, Hybrid monte carlo/molecular dynamics simulation of a refractory metal high entropy alloy, Metall. Mater. Trans. A, 45A, 196, 10.1007/s11661-013-2000-8

Wu, 2014, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130, 277, 10.1016/j.matlet.2014.05.134

Yang, 2012, Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, Procedia Eng., 36, 292, 10.1016/j.proeng.2012.03.043

Zou, 2014, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater, 65, 85, 10.1016/j.actamat.2013.11.049

Grigoriev, 2014, Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method, J. Frict. Wear, 35, 359, 10.3103/S1068366614050067

Maiti, 2014, Structure and properties of refractory high-entropy alloys, 1093

Gorr, 2015, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, J. Alloys Compd., 624, 270, 10.1016/j.jallcom.2014.11.012

Lin, 2015, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, J. Alloys Compd., 624, 100, 10.1016/j.jallcom.2014.11.064

Stepanov, 2015, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett., 142, 153, 10.1016/j.matlet.2014.11.162

Tian, 2015, Empirical design of single phase high-entropy alloys with high hardness, Intermetallics, 58, 1, 10.1016/j.intermet.2014.10.010

Hammond, 2014, Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM, 66, 2021, 10.1007/s11837-014-1113-x

Yang, 2014, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium, JOM, 66, 2009, 10.1007/s11837-014-1059-z

Youssef, 2014, A novel low density, high hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, 95, 10.1080/21663831.2014.985855

Laws, 2015, High entropy brasses and bronzes - microstructure, phase evolution and properties, J. Alloys Cmpds., 650, 949, 10.1016/j.jallcom.2015.07.285

Laws, 2015

Paschoal, 1983, Phase equilibria in the quaternary molybdenum-ruthenium-rhodium-palladium system, Z. Met., 74, 652

Cheng, 2006, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Ann. Chim. Sci. Mat., 31, 723, 10.3166/acsm.31.723-736

Cheng, 2011, Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering, Thin Solid Films, 519, 3185, 10.1016/j.tsf.2010.11.034

Hsieh, 2013, Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings, Surf. Coat. Technol., 221, 118, 10.1016/j.surfcoat.2013.01.036

Hsueh, 2012, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx, Surf. Coat. Technol., 206, 4106, 10.1016/j.surfcoat.2012.03.096

Lin, 2014, Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr)NxSiy high-entropy coatings, Entropy, 16, 405, 10.3390/e16010405

Ren, 2011, Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering, Appl. Surf. Sci., 257, 7172, 10.1016/j.apsusc.2011.03.083

Shen, 2012, Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings, Thin Solid Films, 520, 6183, 10.1016/j.tsf.2012.06.002

Tang, 2010, Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding, Surf. Coat. Technol., 204, 3118, 10.1016/j.surfcoat.2010.02.045

Tang, 2012, Microstructures and mechanical performance of plasma-nitrided Al0.3CrFe1.5MnNi0.5 high-entropy alloys, Metall. Mater. Trans. A, 43A, 2390, 10.1007/s11661-012-1108-6

Braic, 2012, Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol., 211, 117, 10.1016/j.surfcoat.2011.09.033

Senkov, 2015, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., 6, 6529, 10.1038/ncomms7529

Chen, 2009, Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, J. Alloys Compd., 477, 696, 10.1016/j.jallcom.2008.10.111

Takeuchi, 2013, Entropies in alloy design for high-entropy and bulk glassy alloys, Entropy, 15, 3810, 10.3390/e15093810

Cantor, 2014, Multicomponent and high entropy alloys, Entropy, 16, 4749, 10.3390/e16094749

Gali, 2013, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39, 74, 10.1016/j.intermet.2013.03.018

Lucas, 2013, vol. 113

Chou, 2009, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Mater. Sci. Eng. B, 163, 184, 10.1016/j.mseb.2009.05.024

Kao, 2009, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd., 488, 57, 10.1016/j.jallcom.2009.08.090

Li, 2010, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, J. Alloys Compd., 504, S515, 10.1016/j.jallcom.2010.03.111

Lin, 2011, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy, Mater. Chem. Phys., 128, 50, 10.1016/j.matchemphys.2011.02.022

Li, 2009, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd., 475, 752, 10.1016/j.jallcom.2008.07.124

Cui, 2011, Microstructure evolution and corrosion behavior of directionally solidified FeCoNiCrCu high entropy alloy, Appl. Mech. Mater, 66–68, 146, 10.4028/www.scientific.net/AMM.66-68.146

Wang, 2012, Effect of Ti, Al and Cu addition on structural evolution and phase constitution of FeCoNi system equimolar alloys, Mater. Sci. Forum, 724, 335, 10.4028/www.scientific.net/MSF.724.335

Schuh, 2015, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater, 96, 258, 10.1016/j.actamat.2015.06.025

Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171

Guo, 2015, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81, 87, 10.1016/j.matdes.2015.05.019

Jensen, 2016, Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1, Scr. Mater., 121, 1, 10.1016/j.scriptamat.2016.04.017

Senkov, 2016, Development of a refractory high entropy superalloy, Entropy, 18, 102, 10.3390/e18030102

He, 2014, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater, 62, 105, 10.1016/j.actamat.2013.09.037

Lu, 2014, A promising new class of high-temperature alloys: eutectic high-entropy alloys, Sci. Rep., 4, 10.1038/srep06200

Chen, 2010, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A, 527, 5818, 10.1016/j.msea.2010.05.052

Chuang, 2011, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater, 59, 6308, 10.1016/j.actamat.2011.06.041

Tsai, 2010, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490, 160, 10.1016/j.jallcom.2009.10.088

Singh, 2011, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater, 59, 182, 10.1016/j.actamat.2010.09.023

Tong, 2005, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36A, 881, 10.1007/s11661-005-0283-0

Tsai, 2009, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 486, 427, 10.1016/j.jallcom.2009.06.182

Tsai, 2013, Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy, Intermetallics, 32, 329, 10.1016/j.intermet.2012.07.036

Wang, 2008, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A, 491, 154, 10.1016/j.msea.2008.01.064

Chuang, 2013, Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy, J. Alloys Compd., 551, 12, 10.1016/j.jallcom.2012.09.133

Hume-Rothery, 1969

Hume-Rothery, 1935, On the theory of super-lattice structures in alloys, Z. Krist., 91, 23

Hume-Rothery, 1969

Guo, 2015, Phase selection rules for cast high entropy alloys: an overview, Mater. Sci. Technol., 31, 1223, 10.1179/1743284715Y.0000000018

Takeuchi, 2005, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. JIM, 46, 2817, 10.2320/matertrans.46.2817

Tsai, 2013, Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys, Mater. Res. Lett., 1, 207, 10.1080/21663831.2013.831382

Guo, 2013, More than entropy in high-entropy alloys: forming solid solutions or amorphous phase, Intermetallics, 41, 96, 10.1016/j.intermet.2013.05.002

Poletti, 2014, Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems, Acta Mater, 75, 297, 10.1016/j.actamat.2014.04.033

Salishchev, 2014, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 591, 11, 10.1016/j.jallcom.2013.12.210

Nong, 2014, Stability and structure prediction of cubic phase in as cast high entropy alloys, Mater. Sci. Technol., 30, 363, 10.1179/1743284713Y.0000000368

Ren, 2013, Formation condition of solid solution type high-entropy alloy, Trans. Nonferrous Metals Soc. China (English Edition), 23, 991, 10.1016/S1003-6326(13)62557-1

Inoue, 2000, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater, 48, 279, 10.1016/S1359-6454(99)00300-6

Ng, 2012, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31, 165, 10.1016/j.intermet.2012.07.001

Wang, 2014, Phase selection in high-entropy alloys: from nonequilibrium to equilibrium, JOM, 66, 1966, 10.1007/s11837-014-0953-8

Troparevsky, 2015, Criteria for predicting the formation of single-phase high-entropy alloys, Phys. Rev. X, 5

Otto, 2013, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater, 61, 2628, 10.1016/j.actamat.2013.01.042

Curtarolo, 2012, AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., 58, 227, 10.1016/j.commatsci.2012.02.002

Curtarolo, 2012, AFLOW: an automatic framework for high-throughput materials discovery, Comput. Mater. Sci., 58, 218, 10.1016/j.commatsci.2012.02.005

Durga, 2012, Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies, Trans. Indian Inst. Met., 65, 375, 10.1007/s12666-012-0138-5

Raghavan, 2012, Analysis of phase formation in multi-component alloys, J. Alloys Compd., 544, 152, 10.1016/j.jallcom.2012.07.105

Chang, 2004, Phase diagram calculation: past, present and future, Prog. Mat. Sci., 49, 313, 10.1016/S0079-6425(03)00025-2

Chou, 1989, A study of ternary geometrical models, Ber. Bunsenges. Phys. Chem., 93, 735, 10.1002/bbpc.19890930615

Saunders, 1998

Manzoni, 2013, Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc, J. Alloys Compd., 552, 430, 10.1016/j.jallcom.2012.11.074

Huhn, 2013, Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W, JOM, 65, 1772, 10.1007/s11837-013-0772-3

Choudhuri, 2015, Formation of a huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy, Scr. Mater., 100, 36, 10.1016/j.scriptamat.2014.12.006

Wang, 2013, Atomic modeling and simulation of AlCoCrCuFeNi multi-principal-element alloy, vol. 749, 479

Tsau, 2009, Phase transformation and mechanical behavior of TiFeCoNi alloy during annealing, Mater. Sci. Eng. A, 501, 81, 10.1016/j.msea.2008.09.046

Zhuang, 2013, Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys, Mater. Sci. Eng. A, 572, 30, 10.1016/j.msea.2013.01.081

Ma, 2013, Evolution of microstructures and properties of the AlxCrCuFeNi2 high-entropy alloys, Mater. Sci. Forum, 745–746, 706, 10.4028/www.scientific.net/MSF.745-746.706

Ivchenko, 2014, High-entropy equiatomic AlCrFeCoNiCu alloy: hypotheses and experimental data, Tech. Phys., 59, 211, 10.1134/S1063784214020108

Singh, 2014, On the formation of disordered solid solutions in multicomponent alloys, J. Alloys Compd., 587, 113, 10.1016/j.jallcom.2013.10.133

Otto, 2014, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54, 39, 10.1016/j.intermet.2014.05.014

Bhattacharjee, 2014, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd., 587, 544, 10.1016/j.jallcom.2013.10.237

Shaysultanov, 2013, Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy, JOM, 65, 1815, 10.1007/s11837-013-0754-5

Wen, 2009, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17, 266, 10.1016/j.intermet.2008.08.012

Stepanov, 2015, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd., 628, 170, 10.1016/j.jallcom.2014.12.157

Miracle, 1984, Nickel-aluminum-molybdenum phase equilibria, Metall. Trans. A, 15A, 481, 10.1007/BF02644971

Liu, 2012, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A, 548, 64, 10.1016/j.msea.2012.03.080

Lin, 2010, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics, 18, 1244, 10.1016/j.intermet.2010.03.030

Lin, 2010, Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature, J. Alloys Compd., 489, 30, 10.1016/j.jallcom.2009.09.041

Xu, 2015, Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy, Acta Mater., 84, 145, 10.1016/j.actamat.2014.10.033

Zhang, 2011, Explore the possibility of forming fcc high entropy alloys in equal-atomic systems CoFeMnNiM and CoFeMnNiSmM, J. Shanghai Jiaot. Univ. (Sci.), 16, 173, 10.1007/s12204-011-1113-8

Welk, 2013, Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl, Ultramicroscopy, 134, 193, 10.1016/j.ultramic.2013.06.006

Tung, 2007, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 61, 1, 10.1016/j.matlet.2006.03.140

Lu, 2013, Thermal expansion and enhanced heat transfer in high-entropy alloys, J. Appl. Crystallogr., 46, 736, 10.1107/S0021889813005785

Laplanche, 2015, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy, J. Alloys Cmpds., 623, 348, 10.1016/j.jallcom.2014.11.061

van Bohemen, 2013, The nonlinear lattice expansion of iron alloys in the range 100–1600 K, Scr. Mater., 69, 315, 10.1016/j.scriptamat.2013.05.009

Kao, 2011, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Compd., 509, 1607, 10.1016/j.jallcom.2010.10.210

Zhang, 2012, Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys, Intermetallics, 28, 34, 10.1016/j.intermet.2012.03.059

Zuo, 2014, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy, J. Magn. Magn. Mater, 371, 60, 10.1016/j.jmmm.2014.07.023

Zhang, 2013, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Sci. Rep., 3

Kozelj, 2014, Discovery of a superconducting high-entropy alloy, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.107001

Tsai, 2010, Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers, J. Electrochem. Soc., 157, K52, 10.1149/1.3285047

Chen, 2012, Near-constant resistivity in 4.2-360 K in a B2 Al2.08CoCrFeNi, AIP Adv., 2, 10.1063/1.3679072

Crangle, 1971, The magnetization of pure iron and nickel, Proc. Roy. Soc. Lond. A, 321, 477, 10.1098/rspa.1971.0044

Wang, 2009, Solid solution or intermetallics in a high-entropy alloy, Adv. Eng. Mater., 11, 641, 10.1002/adem.200900057

Singh, 2011, Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties, Ultramicroscopy, 111, 619, 10.1016/j.ultramic.2010.12.001

Tariq, 2013, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, J. Alloys Compd., 556, 79, 10.1016/j.jallcom.2012.12.095

Yao, 2008, Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy, Electrochim. Acta, 53, 8359, 10.1016/j.electacta.2008.06.036

Liu, 2012, Microstructure and magnetic properties of FeNiCuMnTiSnx high entropy alloys, Adv. Eng. Mat., 14, 919, 10.1002/adem.201200104

Wang, 2014, Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys, J. Magn. Magn. Mater, 355, 58, 10.1016/j.jmmm.2013.11.049

Zhang, 2013, Fabrication and thermal stability of AlCrTaTiNi/(AlCrTaTiNi)N bilayer diffusion barrier, Acta Metall. Sin., 49, 1611, 10.3724/SP.J.1037.2013.00207

Tsai, 2008, Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization, Appl. Phys. Lett., 92, 10.1063/1.2841810

Chang, 2009, Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization, J. Electrochem. Soc., 156, G37, 10.1149/1.3097186

Tsai, 2008, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 516, 5527, 10.1016/j.tsf.2007.07.109

Kao, 2010, Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys, Int. J. Hydrogen Energ, 35, 9046, 10.1016/j.ijhydene.2010.06.012

Kunce, 2013, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energ, 38, 12180, 10.1016/j.ijhydene.2013.05.071

Kunce, 2014, Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energ, 39, 9904, 10.1016/j.ijhydene.2014.02.067

Tsai, 2008, Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation, Jpn. J. Appl. Phys., 47, 5755, 10.1143/JJAP.47.5755

Cinar, 2014, Synthesis, characterization, and thermoelectric properties of electrospun boron-doped barium-stabilized bismuth-cobalt oxide nanoceramics, Metall. Mater. Trans. A, 45A, 3929, 10.1007/s11661-014-2343-9

Nagase, 2013, MeV electron-irradiation-induced structural change in the BCC phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio, Intermetallics, 38, 70, 10.1016/j.intermet.2013.02.009

Egami, 2014, Irradiation resistance of multicomponent alloys, Metall. Mater. Trans. A, 45A, 180, 10.1007/s11661-013-1994-2

Segui, 2014, Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys, J. Appl. Phys., 115, 10.1063/1.4868055

Kao, 2014, High entropy alloy mediated growth of graphene, CrystEngComm, 16, 6187, 10.1039/C4CE00227J

Chang, 2008, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol., 202, 3360, 10.1016/j.surfcoat.2007.12.014

Brown, 1980, Correlations for diffusion constants, Acta Metall., 28, 1085, 10.1016/0001-6160(80)90092-9

Chen, 2013, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51, 854, 10.1016/j.matdes.2013.04.061

Dong, 2014, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57, 67, 10.1016/j.matdes.2013.12.048

Varalakshmi, 2010, Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, Metall. Mater. Trans. A, 41A, 2703, 10.1007/s11661-010-0344-x

Wang, 2014, Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy, Adv. Powder Technol., 25, 1334, 10.1016/j.apt.2014.03.014

Ji, 2014, Mechanical alloying synthesis and spark plasma sintering of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 589, 61, 10.1016/j.jallcom.2013.11.146

Fang, 2014, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, Mater. Des., 54, 973, 10.1016/j.matdes.2013.08.099

Jinhong, 2012, Microstructure and properties of AlCrFeCuNix (0.6<x<1.4) high-entropy alloys, Mater. Sci. Eng. A, 534, 228, 10.1016/j.msea.2011.11.063

Qiu, 2013, Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy, J. Alloys Compd., 555, 246, 10.1016/j.jallcom.2012.12.071

Pi, 2011, Microstructure and property of AlTiCrFeNiCu high-entropy alloy, J. Alloys Compd., 509, 5641, 10.1016/j.jallcom.2011.02.108

Varalakshmi, 2010, Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, Mater. Sci. Eng. A, 527, 1027, 10.1016/j.msea.2009.09.019

Chen, 2013, Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins, Mater. Sci. Eng. A, 565, 439, 10.1016/j.msea.2012.12.072

Hsu, 2010, Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys, Adv. Eng. Mater., 12, 44, 10.1002/adem.200900171

Chen, 2006, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metall. Mater. Trans. A, 37, 1363, 10.1007/s11661-006-0081-3

Liu, 2015, Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys, J. Alloys Compd., 619, 610, 10.1016/j.jallcom.2014.09.073

Zhou, 2007, Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys, Mater. Sci. Eng. A, 454–455, 260, 10.1016/j.msea.2006.11.049

Fu, 2013, Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, J. Alloys Compd., 553, 316, 10.1016/j.jallcom.2012.11.146

Ji, 2014, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56, 24, 10.1016/j.intermet.2014.08.008

Fu, 2014, Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy, Mater. Sci. Eng. A, 597, 204, 10.1016/j.msea.2013.12.096

Li, 2014, Effect of Cr on microstructure and properties of a series of AlTiCrxFeCoNiCu high-entropy alloys, J. Mater. Eng. Perform., 23, 1197, 10.1007/s11665-014-0871-5

Zhuang, 2012, Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng. A, 556, 395, 10.1016/j.msea.2012.07.003

Ma, 2012, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532, 480, 10.1016/j.msea.2011.10.110

Hu, 2010, Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys, Mater. Des., 31, 1599, 10.1016/j.matdes.2009.09.016

Fu, 2013, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique, Mater. Des., 44, 535, 10.1016/j.matdes.2012.08.048

Sheng, 2013, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Mater. Sci. Eng. A, 567, 14, 10.1016/j.msea.2013.01.006

Shun, 2012, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Mater. Charact., 70, 63, 10.1016/j.matchar.2012.05.005

Zhu, 2010, Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys, J. Alloys Compd., 497, 52, 10.1016/j.jallcom.2010.03.074

Shun, 2012, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys, Mater. Sci. Eng. A, 556, 170, 10.1016/j.msea.2012.06.075

Zhou, 2007, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90, 181904, 10.1063/1.2734517

Wang, 2009, Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy, Int. J. Mod. Phys. B, 23, 1254, 10.1142/S0217979209060774

Otto, 2013, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater, 61, 5743, 10.1016/j.actamat.2013.06.018

Zaddach, 2015, Tensile properties of low-stacking fault energy high-entropy alloys, Mat. Sci. Eng. A, 636, 373, 10.1016/j.msea.2015.03.109

Daoud, 2013, Microstructure and tensile behavior of Al8Co17Cr 17Cu8Fe17Ni33 (at.%) high-entropy alloy, JOM, 65, 1805, 10.1007/s11837-013-0756-3

Ng, 2014, Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys, J. Alloys Compd., 584, 530, 10.1016/j.jallcom.2013.09.105

Ma, 2014, Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification, Intermetallics, 54, 104, 10.1016/j.intermet.2014.05.018

Shun, 2009, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd., 479, 157, 10.1016/j.jallcom.2008.12.088

Hemphill, 2012, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater, 60, 5723, 10.1016/j.actamat.2012.06.046

Kuznetsov, 2012, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A, 533, 107, 10.1016/j.msea.2011.11.045

Wu, 2014, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater, 81, 428, 10.1016/j.actamat.2014.08.026

Stepanov, 2015, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics, 59, 8, 10.1016/j.intermet.2014.12.004

Wu, 2014, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104, 10.1063/1.4863748

Davis, 1993

Ti-5Al-2.5Sn ELI Data Sheet. vol. 2015: RTI, International.

Liu, 2013, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater., 68, 526, 10.1016/j.scriptamat.2012.12.002

Haglund, 2015, Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures, Intermetallics, 58, 62, 10.1016/j.intermet.2014.11.005

Deng, 2015, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94, 124, 10.1016/j.actamat.2015.04.014

Wu, 2015, Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy, Mat. Sci. Eng. A, 640, 217, 10.1016/j.msea.2015.05.097

Kuznetsov, 2013, Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum, 735, 146, 10.4028/www.scientific.net/MSF.735.146

Zuo, 2013, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Min. Met. Mater., 20, 549, 10.1007/s12613-013-0764-x

Sheng, 2014, Microstructure and tensile properties of Al0.5CoCrCuFeNi high-entropy alloy, Appl. Mech. Mater, 456, 494, 10.4028/www.scientific.net/AMM.456.494

Liu, 2013, Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys, Mater. Des., 44, 223, 10.1016/j.matdes.2012.08.019

Liu, 2015, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60, 1, 10.1016/j.intermet.2015.01.004

Hsu, 2013, Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys, JOM, 65, 1840, 10.1007/s11837-013-0753-6

Zhang, 2013, Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening, Scr. Mater, 69, 342, 10.1016/j.scriptamat.2013.05.020

Roy, 2014, Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system, Mater. Lett., 132, 186, 10.1016/j.matlet.2014.06.067

Senkov, 2012, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47, 4062, 10.1007/s10853-012-6260-2

Senkov, 2013, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, 565, 51, 10.1016/j.msea.2012.12.018

Senkov, 2015, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloys Compd., 649, 1110, 10.1016/j.jallcom.2015.07.209

Gan, 2013, A novel high-entropy alloy AlMgZnSnPbCuMnNi with low free corrosion potential, Appl. Mech. Mater, 327, 103, 10.4028/www.scientific.net/AMM.327.103

Liu, 2012, Study on corrosion resistance of high-entropy alloys NiCoCrFeMnCuC in medium acid liquid, Appl. Mech. Mater, 117–119, 1816

Chou, 2010, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corros. Sci., 52, 3481, 10.1016/j.corsci.2010.06.025

Chou, 2010, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corros. Sci., 52, 2571, 10.1016/j.corsci.2010.04.004

Lee, 2008, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci., 50, 2053, 10.1016/j.corsci.2008.04.011

Chou, 2011, Pitting corrosion of Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing nitrate solutions, Corrosion, 67

Qiu, 2013, Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy, J. Alloys Compd., 549, 195, 10.1016/j.jallcom.2012.09.091

Lee, 2007, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 154, C424, 10.1149/1.2744133

Hsu, 2005, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92, 112, 10.1016/j.matchemphys.2005.01.001

Fazakas, 2014, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy, Mater. Corros., 65, 691, 10.1002/maco.201206941

Ren, 2012, Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution, Mater. Corros., 63, 828, 10.1002/maco.201106072

Chen, 2007, Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 degrees C high-purity water, Mater. Lett., 61, 2692, 10.1016/j.matlet.2006.03.158

Li, 2013, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process, Metall. Mater. Trans. A, 44A, 1767, 10.1007/s11661-012-1535-4

Soare, 2014, The mechanical and corrosion behaviors of as-cast and re-melted AlCrCuFeMnNi multi-component high-entropy alloy, Metall. Mater. Trans. A, 46, 1468, 10.1007/s11661-014-2523-7

Dogan, 2013, Elevated-temperature corrosion of CoCrCuFeNiAl0.5Bx high-entropy alloys in simulated Syngas containing H2S, Oxid. Met., 80, 177, 10.1007/s11085-013-9407-x

Yu, 2012, Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy, Rare Metal. Mat. Eng., 41, 862

Chen, 2006, Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 degrees C high-purity water, Scr. Mater, 54, 1997, 10.1016/j.scriptamat.2006.03.021

Lee, 2008, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid, Thin Solid Films, 517, 1301, 10.1016/j.tsf.2008.06.014

Huang, 2012, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate, Mater. Des., 41, 338, 10.1016/j.matdes.2012.04.049

Nong, 2011, Effect of aluminum content on microstructure and wear resistance of CuCrFeMnTiAlx high-entropy alloy, Rare Metal. Mat. Eng., 40, 550

Chen, 2009, Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW), Surf. Coat. Technol., 203, 3231, 10.1016/j.surfcoat.2009.03.058

Lin, 2008, Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis, Surf. Coat. Technol., 202, 4666, 10.1016/j.surfcoat.2008.03.033

Hsu, 2010, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268, 653, 10.1016/j.wear.2009.10.013

Wu, 2006, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261, 513, 10.1016/j.wear.2005.12.008

Jiang, 2013, High temperature oxidation behaviour of AlCuTiFeNiCr high-entropy alloy, Adv. Mat. Res., 652–654, 1115

Huang, 2011, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V alloy, Surf. Coat. Technol., 206, 1389, 10.1016/j.surfcoat.2011.08.063

1990

Shun, 2013, Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy, Mater. Charact., 81, 92, 10.1016/j.matchar.2013.04.012

Shun, 2010, The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 C, J. Alloys Compd., 495, 55, 10.1016/j.jallcom.2010.02.032

Shun, 2010, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, J. Alloys Compd., 493, 105, 10.1016/j.jallcom.2009.12.071

Shun, 2009, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd., 478, 269, 10.1016/j.jallcom.2008.12.014

Tsao, 2012, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy, Mater. Des., 36, 854, 10.1016/j.matdes.2011.04.067

Ren, 2012, Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Mater. Des., 33, 121, 10.1016/j.matdes.2011.07.005

Lee, 2014, Age hardening of the Al0.5CoCrNiTi0.5 high-entropy alloy, Metall. Mater. Trans. A, 45A, 191, 10.1007/s11661-013-1931-4

Toda-Caraballo, 2015, Modelling solid solution hardening in high entropy alloys, Acta Mater, 85, 14, 10.1016/j.actamat.2014.11.014

Nagase, 2014, Irradiation damage in multicomponent equimolar alloys and high entropy alloys (HEAs), Microscopy, 63, 10.1093/jmicro/dfu054

Rost, 2015, Entropy-stabilized oxides, Nat. Commun., 6, 8485, 10.1038/ncomms9485

Mandigo, 2015

Wood, 2013

Tsau, 2013, Microstructures and Mechanical Properties of TiCrZrNbNx alloy nitride thin films, Entropy, 15, 5012, 10.3390/e15115012

Lai, 2006, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol., 201, 3275, 10.1016/j.surfcoat.2006.06.048

Lin, 2007, Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter, Surf. Coat. Technol., 201, 6304, 10.1016/j.surfcoat.2006.11.041

Tang, 2009, Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys, Metall. Mater. Trans. A, 40A, 1479, 10.1007/s11661-009-9821-5

Tsai, 2012, Strong amorphization of high-entropy AlBCrSiTi nitride film, Thin Solid Films, 520, 2613, 10.1016/j.tsf.2011.11.025

Yu, 2012, Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition, Appl. Surf. Sci., 263, 58, 10.1016/j.apsusc.2012.08.109

Braic, 2013, Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings, Appl. Surf. Sci., 284, 671, 10.1016/j.apsusc.2013.07.152

Braic, 2010, Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering, Surf. Coat. Technol., 204, 2010, 10.1016/j.surfcoat.2009.10.049

Duan, 2013, Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant, Wear, 297, 1045, 10.1016/j.wear.2012.11.014

Lai, 2008, Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings, Surf. Coat. Technol., 202, 3732, 10.1016/j.surfcoat.2008.01.014

Ren, 2013, Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering, J. Alloys Compd., 560, 171, 10.1016/j.jallcom.2013.01.148

Yu, 2014, Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution, Metall. Mater. Trans. A, 45A, 201, 10.1007/s11661-013-1982-6

Green, 2013, Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials, J. Appl. Phys., 113, 231101, 10.1063/1.4803530

Thermoelectric materials, 2016

Yu, 2009, High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation meling and spark plasma sintering, Acta Mater, 57, 2757, 10.1016/j.actamat.2009.02.026

Yin, 2015, Standard enthalpies of formation of selected XYZ half-Heusler compounds, J. Chem. Thermodyn., 91, 1, 10.1016/j.jct.2015.07.016

Xie, 2012, Recent advances in nanostructured thermoelectric half-Heusler compounds, Nanomaterials, 2, 379, 10.3390/nano2040379

Potyrailo, 2011, Combinatorial and high-throughput screening of materials libraries: review of state of the art, ACS Comb. Sci., 13, 579, 10.1021/co200007w

Potyrailo, 2005, Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol., 16, 1, 10.1088/0957-0233/16/1/001

Rajan, 2008, Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery, Annu. Rev. Mater. Res., 38, 299, 10.1146/annurev.matsci.38.060407.130217

McCluskey, 2010, Combinatorial nanocalorimetry, J. Mater. Res., 25, 2086, 10.1557/jmr.2010.0286

Curtarolo, 2013, The high-throughput highway to computational materials design, Nat. Mater., 12, 191, 10.1038/nmat3568

Jain, 2013, Commentary: the Materials Project: a materials genome approach to accelerating materials innovation, Apl. Mater, 1, 10.1063/1.4812323

Ceder, 2013, The stuff of dreams, Sci. Am., 36, 10.1038/scientificamerican1213-36

Colinet, 1998, Comparison of enthalpies of formation and enthalpies of mixing in transition metal based alloys, Thermochim. Acta, 314, 229, 10.1016/S0040-6031(98)00238-X

Curtarolo, 2005, Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys, Comput. Coupling Phase Diagr. Thermochem., 29, 163, 10.1016/j.calphad.2005.01.002