A critical Kirchhoff type problem involving a nonlocal operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Di Nezza, 2012, Hitchhiker’s guide to the fractional Sobolev spaces, Sci. Math. B., 136, 521, 10.1016/j.bulsci.2011.12.004
A. Fiscella, Saddle point solutions for non-local elliptic operators, paper. Available online at http://arxiv.org/abs/1210.8401 submitted for publication.
R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent. Preprint available at http://www.math.utexas.edu/mp_arc-bin/mpa?yn=12-58.
Servadei, 2013, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc.
Alves, 2010, On a class of nonlocal elliptic problems with critical growth, Differential Equations & Applications, 2, 409, 10.7153/dea-02-25
Chen, 2013, Multiple solutions for the nonhomogeneous Kirchhoff equation on RN, Nonlinear Anal. RWA, 14, 1477, 10.1016/j.nonrwa.2012.10.010
Figueiredo, 2013, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401, 706, 10.1016/j.jmaa.2012.12.053
Figueiredo, 2012, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25, 853
Liang, 2013, Soliton solutions to Kirchhoff type problems involving the critical growth in RN, Nonlinear Anal., 81, 31, 10.1016/j.na.2012.12.003
Autuori, 2013, A priori estimates for solutions of p-Kirchhoff systems under dynamic boundary conditions, vol. 594, 59
Autuori, 2010, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73, 1952, 10.1016/j.na.2010.05.024
Autuori, 2012, Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci., 22, 1150009, 10.1142/S0218202511500096
Autuori, 2010, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196, 489, 10.1007/s00205-009-0241-x
Colasuonno, 2011, Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations, Nonlinear Anal., 74, 5962, 10.1016/j.na.2011.05.073
Yang, 2012, Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Math. Phys., 53, 15
Autuori, 2013, Elliptic problems involving the fractional Laplacian in RN, J. Differential Equations, 255, 2340, 10.1016/j.jde.2013.06.016
Barrios, 2012, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252, 6133, 10.1016/j.jde.2012.02.023
B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave–convex power nonlinearities, paper. Available online at http://arxiv.org/abs/1306.3190 submitted for publication.
Capella, 2011, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, Commun. Pure Appl. Anal., 10, 1645, 10.3934/cpaa.2011.10.1645
G. Molica Bisci, R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, paper. Available online at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=13-24 submitted for publication.
Servadei, 2013, A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, 2445, 10.3934/cpaa.2013.12.2445
Tan, 2011, The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36, 21, 10.1007/s00526-010-0378-3
Servadei, 2012, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887, 10.1016/j.jmaa.2011.12.032
Servadei, 2013, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33, 2105, 10.3934/dcds.2013.33.2105
Palatucci, 2013, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 10.1007/s00526-013-0656-y
Rabinowitz, 1986, vol. 65
Brézis, 2011
Carrier, 1945, On the nonlinear vibration problem of the elastic string, Quart. Appl. Math., 3, 157, 10.1090/qam/12351
Kirchhoff, 1876
Kirchhoff, 1883
Oplinger, 1960, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am., 32, 1529, 10.1121/1.1907948
Ambrosio, 2011, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math., 134, 377, 10.1007/s00229-010-0399-4