A criterion for the stability of planets in chains of resonances

Icarus - Tập 388 - Trang 115206 - 2022
Max Goldberg1, Konstantin Batygin2, Alessandro Morbidelli3
1Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
2Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
3Laboratoire Lagrange, UMR7293, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur. Boulevard de l’Observatoire, 06304, Nice Cedex 4, France

Tài liệu tham khảo

Batygin, 2015, Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures, Mon. Not. R. Astron. Soc., 451, 2589, 10.1093/mnras/stv1063 Batygin, 2015, Dynamical evolution of multi-resonant systems: the case of GJ876, Astron. J., 149, 167, 10.1088/0004-6256/149/5/167 Batygin, 2008, On the dynamical stability of the solar system, Astrophys. J., 683, 1207, 10.1086/589232 Batygin, 2013, Dissipative divergence of resonant orbits, Astron. J., 145, 1, 10.1088/0004-6256/145/1/1 Beauge, 1994, Asymmetric librations in exterior resonances, Celestial Mech. Dynam. Astronom., 60, 225, 10.1007/BF00693323 Chambers, 1996, The stability of multi-planet systems, Icarus, 119, 261, 10.1006/icar.1996.0019 Cossou, 2014, Hot super-earths and giant planet cores from different migration histories, Astron. Astrophys., 569, A56, 10.1051/0004-6361/201424157 Cresswell, 2008, Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc, Astron. Astrophys., 482, 677, 10.1051/0004-6361:20079178 Deck, 2012, Rapid dynamical chaos in an exoplanetary system, Astrophys. J., 755, L21, 10.1088/2041-8205/755/1/L21 Deck, 2013, First-order resonance overlap and the stability of close two-planet systems, Astrophys. J., 774, 129, 10.1088/0004-637X/774/2/129 Fabrycky, 2014, Architecture of kepler’s multi-transiting systems. II. New investigations with twice as many candidates, Astrophys. J., 790, 146, 10.1088/0004-637X/790/2/146 Gladman, 1993, Dynamics of systems of two close planets, Icarus, 106, 247, 10.1006/icar.1993.1169 Goldberg, 2022, Architectures of compact super-earth systems shaped by instabilities, Astron. J., 163, 201, 10.3847/1538-3881/ac5961 Hadden, 2018, A criterion for the onset of chaos in systems of two eccentric planets, Astron. J., 156, 95, 10.3847/1538-3881/aad32c Hands, 2014, Understanding the assembly of kepler’s compact planetary systems, Mon. Not. R. Astron. Soc., 445, 749, 10.1093/mnras/stu1751 Ida, 2008, Toward a deterministic model of planetary formation. IV. Effects of type I migration, Astrophys. J., 673, 487, 10.1086/523754 Ida, 2010, Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-earth systems around solar-type stars, Astrophys. J., 719, 810, 10.1088/0004-637X/719/1/810 Izidoro, 2021, Formation of planetary systems by pebble accretion and migration. Hot super-earth systems from breaking compact resonant chains, Astron. Astrophys., 650, A152, 10.1051/0004-6361/201935336 Izidoro, 2017, Breaking the chains: hot super-earth systems from migration and disruption of compact resonant chains, Mon. Not. R. Astron. Soc., 470, 1750, 10.1093/mnras/stx1232 Laplace, 1799 Laskar, 1989, A numerical experiment on the chaotic behaviour of the solar system, Nature, 338, 237, 10.1038/338237a0 Laskar, 2008, Chaotic diffusion in the solar system, Icarus, 196, 1, 10.1016/j.icarus.2008.02.017 Le Verrier, 1840, Sur les variations séculaires des éléments elliptiques des sept planetes principales: Mercure, vénus, la terre, mars, jupiter, saturne et uranus, J. Math. Pures Appl., 4, 220 Luger, 2017, A seven-planet resonant chain in TRAPPIST-1, Nat. Astron., 1, 0129, 10.1038/s41550-017-0129 Matsumoto, 2012, The orbital stability of planets trapped in the first-order mean-motion resonances, Icarus, 221, 624, 10.1016/j.icarus.2012.08.032 Matsumoto, 2020, Breaking resonant chains: destabilization of resonant planets due to long-term mass evolution, Astrophys. J., 893, 43, 10.3847/1538-4357/ab7cd7 Mills, 2016, A resonant chain of four transiting, sub-neptune planets, Nature, 533, 509, 10.1038/nature17445 Owen, 2019, Atmospheric escape and the evolution of close-in exoplanets, Annu. Rev. Earth Planet. Sci., 47, 67, 10.1146/annurev-earth-053018-060246 Petit, 2018, Hill stability in the AMD framework, Astron. Astrophys., 617, A93, 10.1051/0004-6361/201833088 Petit, 2020, The path to instability in compact multi-planetary systems, Astron. Astrophys., 641, A176, 10.1051/0004-6361/202038764 Pichierri, 2020, The onset of instability in resonant chains, Mon. Not. R. Astron. Soc., 494, 4950, 10.1093/mnras/staa1102 Poincaré, 1899 Quillen, 2011, Three-body resonance overlap in closely spaced multiple-planet systems, Mon. Not. R. Astron. Soc., 418, 1043, 10.1111/j.1365-2966.2011.19555.x Rath, 2021 Rein, 2015, WHFAST: a fast and unbiased implementation of a symplectic wisdom-holman integrator for long-term gravitational simulations, Mon. Not. R. Astron. Soc., 452, 376, 10.1093/mnras/stv1257 Roy, 1988, Project LONGSTOP, Vistas Astron., 32, 95, 10.1016/0083-6656(88)90399-6 Spalding, 2016, Spin-orbit misalignment as a driver of the kepler dichotomy, Astrophys. J., 830, 5, 10.3847/0004-637X/830/1/5 Tamayo, 2020, Predicting the long-term stability of compact multiplanet systems, Proc. Natl. Acad. Sci., 117, 18194, 10.1073/pnas.2001258117 Tamayo, 2021, A criterion for the onset of chaos in compact, eccentric multiplanet systems, Astron. J., 162, 220, 10.3847/1538-3881/ac1c6a Tamayo, 2020, REBOUNDx: a library for adding conservative and dissipative forces to otherwise symplectic N-body integrations, Mon. Not. R. Astron. Soc., 491, 2885, 10.1093/mnras/stz2870 Terquem, 2007, Migration and the formation of systems of hot super-earths and neptunes, Astrophys. J., 654, 1110, 10.1086/509497 Wisdom, 1983, Chaotic behavior and the origin of the 3/1 kirkwood gap, Icarus, 56, 51, 10.1016/0019-1035(83)90127-6