A coupled electrochemical system for CO2 capture, conversion and product purification

eScience - Tập 3 - Trang 100155 - 2023
Mang Wang1, Jingshan Luo1,2
1Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, 300350, Tianjin, China
2Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Tài liệu tham khảo

Fan, 2020, Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products, Sci. Adv., 6, 3111, 10.1126/sciadv.aay3111 Nitopi, 2019, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev., 119, 7610, 10.1021/acs.chemrev.8b00705 Sabatino, 2021, A comparative energy and costs assessment and optimization for direct air capture technologies, Joule, 5, 1, 10.1016/j.joule.2021.05.023 Smith, 2019, Pathways to industrial-scale fuel out of thin air from CO2 electrolysis, Joule, 3, 1822, 10.1016/j.joule.2019.07.009 Digdaya, 2020, A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater, Nat. Commun., 11, 4412, 10.1038/s41467-020-18232-y Eisaman, 2012, CO2 extraction from seawater using bipolar membrane electrodialysis, Energy Environ. Sci., 5, 7346, 10.1039/c2ee03393c Prajapati, 2022, Fully-integrated electrochemical system that captures CO2 from flue gas to produce value-added chemicals at ambient conditions, Energy Environ. Sci., 15, 5105, 10.1039/D2EE03396H Rinberg, 2021, Alkalinity concentration swing for direct air capture of carbon dioxide, ChemSusChem, 14, 4439, 10.1002/cssc.202100786 Gu, 2022, Solar-radiation-induced adsorption/desorption system for carbon dioxide capture, Cell Rep. Phys. Sci., 3, 101122, 10.1016/j.xcrp.2022.101122 Badiei, 2012, Overview of carbon dioxide separation technology, Power and energy systems and Applications, 146 Renfrew, 2020, Electrochemical approaches toward CO2 capture and concentration, ACS Catal., 10, 13058, 10.1021/acscatal.0c03639 Sharifian, 2021, Electrochemical carbon dioxide capture to close the carbon cycle, Energy Environ. Sci., 14, 781, 10.1039/D0EE03382K Wang, 2022, Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction, eScience, 2, 518, 10.1016/j.esci.2022.08.002 Gu, 2019, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO, Science, 364, 1091, 10.1126/science.aaw7515 Zhu, 2022, Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction, eScience, 2, 445, 10.1016/j.esci.2022.05.002 Wang, 2022, Scalable preparation of a CuO nanosheet array via corrosion engineering for selective C-C coupling in CO2 electroreduction, J. Mater. Chem. A, 10, 14070, 10.1039/D2TA01634F Wan, 2022, Bimetallic Cu-Zn catalysts for electrochemical CO2 reduction: phase-separated versus core-shell distribution, ACS Catal., 12, 2741, 10.1021/acscatal.1c05272 Zhai, 2022, Phase engineering of metal nanocatalysts for electrochemical CO2 reduction, eScience, 2, 467, 10.1016/j.esci.2022.09.002 Dinh, 2018, CO2 electroreduction to ethylene via hydroxide mediated copper catalysts at an abrupt interface, Science, 360, 783, 10.1126/science.aas9100 Burdyny, 2019, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions, Energy Environ. Sci., 12, 1442, 10.1039/C8EE03134G Xie, 2022, High carbon utilization in CO2 reduction to multi-carbon products in acidic media, Nat. Catal., 5, 564, 10.1038/s41929-022-00788-1 Ma, 2020, Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs, Energy Environ. Sci., 13, 977, 10.1039/D0EE00047G Tang, 2021, Direct electrosynthesis of 52% concentrated CO on silver's twin boundary, Nat. Commun., 12, 2139, 10.1038/s41467-021-22428-1 de Arquer, 2020, CO2 electrolysis to multicarbon products products at activities greater than 1 A cm−2, Science, 367, 661, 10.1126/science.aay4217 Xia, 2019, Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices, Nat. Energy, 4, 776, 10.1038/s41560-019-0451-x Sullivan, 2021, Coupling electrochemical CO2 conversion with CO2 capture, Nat. Catal., 4, 952, 10.1038/s41929-021-00699-7 Liu, 2022, Ammonia-mediated CO2 capture and direct electroreduction to formate, ACS Energy Lett., 7, 4483, 10.1021/acsenergylett.2c02247 Eisaman, 2011, CO2 separation using bipolar membrane electrodialysis, Energy Environ. Sci., 4, 1319, 10.1039/C0EE00303D Kim, 2012, Recycling of acidic and alkaline solutions by electrodialysis in a treatment process for uranium oxide waste using a carbonate solution with hydrogen peroxide, Ind. Eng. Chem. Res., 51, 6275, 10.1021/ie202492a Kim, 2013, Evaluation of recovery characteristic of acidic and alkaline solutions from NaNO3 using conventional electrodialysis and electrodialysis with bipolar membranes, Kor. J. Chem. Eng., 30, 1760, 10.1007/s11814-013-0089-5 Garg, 2022, How membrane characteristics influence the performance of CO2 and CO electrolysis, Energy Environ. Sci., 15, 4440, 10.1039/D2EE01818G Yoo, 2013, Carbon dioxide capture capacity of sodium hydroxide aqueous solution, J. Environ. Manag., 114, 512 Kim, 2015, Carbon dioxide capture and carbonate synthesis via carbonation of KOH-dissolved alcohol solution, J. Korean Soc. Environ. Eng., 37, 597, 10.4491/KSEE.2015.37.11.597 Zhong, 2014, Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage, J. Phys. Chem. C, 119, 55, 10.1021/jp509043h Xie, 2023, Electrochemical transformation of limestone into calcium hydroxide and valuable carbonaceous products for decarbonizing cement production, iScience, 26, 106015, 10.1016/j.isci.2023.106015 Spurgeon, 2018, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products, Energy Environ. Sci., 11, 1536, 10.1039/C8EE00097B Schreier, 2017, Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO, Nat. Energy, 2, 17087, 10.1038/nenergy.2017.87 Zheng, 2019, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule, 3, 265, 10.1016/j.joule.2018.10.015 Li, 2022, Chloride ion adsorption enables ampere-level CO2 electroreduction over silver hollow fiber, Angew. Chem. Int. Ed., 61 Ma, 2018, In situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion, ACS Energy Lett., 3, 1301, 10.1021/acsenergylett.8b00472 Seifitokaldani, 2018, Hydronium-induced switching between CO2 electroreduction pathways, J. Am. Chem. Soc., 140, 3833, 10.1021/jacs.7b13542 Ren, 2022, A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction, Angew. Chem. Int. Ed., 61, 10.1002/anie.202214173 Pan, 2022, Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly, ACS Energy Lett., 7, 4224, 10.1021/acsenergylett.2c02292 Li, 2019, Electrolytic conversion of bicarbonate into CO in a flow cell, Joule, 3, 1487, 10.1016/j.joule.2019.05.021 Li, 2020, Conversion of bicarbonate to formate in an electrochemical flow reactor, ACS Energy Lett., 5, 2624, 10.1021/acsenergylett.0c01291 Li, 2019, CO2 Electroreduction from carbonate electrolyte, ACS Energy Lett., 4, 1427, 10.1021/acsenergylett.9b00975 Xiao, 2021, CO2 reduction with coin catalyst, Nano Res., 15, 3859, 10.1007/s12274-021-3990-y