A coupled electrochemical system for CO2 capture, conversion and product purification
Tài liệu tham khảo
Fan, 2020, Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products, Sci. Adv., 6, 3111, 10.1126/sciadv.aay3111
Nitopi, 2019, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev., 119, 7610, 10.1021/acs.chemrev.8b00705
Sabatino, 2021, A comparative energy and costs assessment and optimization for direct air capture technologies, Joule, 5, 1, 10.1016/j.joule.2021.05.023
Smith, 2019, Pathways to industrial-scale fuel out of thin air from CO2 electrolysis, Joule, 3, 1822, 10.1016/j.joule.2019.07.009
Digdaya, 2020, A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater, Nat. Commun., 11, 4412, 10.1038/s41467-020-18232-y
Eisaman, 2012, CO2 extraction from seawater using bipolar membrane electrodialysis, Energy Environ. Sci., 5, 7346, 10.1039/c2ee03393c
Prajapati, 2022, Fully-integrated electrochemical system that captures CO2 from flue gas to produce value-added chemicals at ambient conditions, Energy Environ. Sci., 15, 5105, 10.1039/D2EE03396H
Rinberg, 2021, Alkalinity concentration swing for direct air capture of carbon dioxide, ChemSusChem, 14, 4439, 10.1002/cssc.202100786
Gu, 2022, Solar-radiation-induced adsorption/desorption system for carbon dioxide capture, Cell Rep. Phys. Sci., 3, 101122, 10.1016/j.xcrp.2022.101122
Badiei, 2012, Overview of carbon dioxide separation technology, Power and energy systems and Applications, 146
Renfrew, 2020, Electrochemical approaches toward CO2 capture and concentration, ACS Catal., 10, 13058, 10.1021/acscatal.0c03639
Sharifian, 2021, Electrochemical carbon dioxide capture to close the carbon cycle, Energy Environ. Sci., 14, 781, 10.1039/D0EE03382K
Wang, 2022, Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction, eScience, 2, 518, 10.1016/j.esci.2022.08.002
Gu, 2019, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO, Science, 364, 1091, 10.1126/science.aaw7515
Zhu, 2022, Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction, eScience, 2, 445, 10.1016/j.esci.2022.05.002
Wang, 2022, Scalable preparation of a CuO nanosheet array via corrosion engineering for selective C-C coupling in CO2 electroreduction, J. Mater. Chem. A, 10, 14070, 10.1039/D2TA01634F
Wan, 2022, Bimetallic Cu-Zn catalysts for electrochemical CO2 reduction: phase-separated versus core-shell distribution, ACS Catal., 12, 2741, 10.1021/acscatal.1c05272
Zhai, 2022, Phase engineering of metal nanocatalysts for electrochemical CO2 reduction, eScience, 2, 467, 10.1016/j.esci.2022.09.002
Dinh, 2018, CO2 electroreduction to ethylene via hydroxide mediated copper catalysts at an abrupt interface, Science, 360, 783, 10.1126/science.aas9100
Burdyny, 2019, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions, Energy Environ. Sci., 12, 1442, 10.1039/C8EE03134G
Xie, 2022, High carbon utilization in CO2 reduction to multi-carbon products in acidic media, Nat. Catal., 5, 564, 10.1038/s41929-022-00788-1
Ma, 2020, Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs, Energy Environ. Sci., 13, 977, 10.1039/D0EE00047G
Tang, 2021, Direct electrosynthesis of 52% concentrated CO on silver's twin boundary, Nat. Commun., 12, 2139, 10.1038/s41467-021-22428-1
de Arquer, 2020, CO2 electrolysis to multicarbon products products at activities greater than 1 A cm−2, Science, 367, 661, 10.1126/science.aay4217
Xia, 2019, Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices, Nat. Energy, 4, 776, 10.1038/s41560-019-0451-x
Sullivan, 2021, Coupling electrochemical CO2 conversion with CO2 capture, Nat. Catal., 4, 952, 10.1038/s41929-021-00699-7
Liu, 2022, Ammonia-mediated CO2 capture and direct electroreduction to formate, ACS Energy Lett., 7, 4483, 10.1021/acsenergylett.2c02247
Eisaman, 2011, CO2 separation using bipolar membrane electrodialysis, Energy Environ. Sci., 4, 1319, 10.1039/C0EE00303D
Kim, 2012, Recycling of acidic and alkaline solutions by electrodialysis in a treatment process for uranium oxide waste using a carbonate solution with hydrogen peroxide, Ind. Eng. Chem. Res., 51, 6275, 10.1021/ie202492a
Kim, 2013, Evaluation of recovery characteristic of acidic and alkaline solutions from NaNO3 using conventional electrodialysis and electrodialysis with bipolar membranes, Kor. J. Chem. Eng., 30, 1760, 10.1007/s11814-013-0089-5
Garg, 2022, How membrane characteristics influence the performance of CO2 and CO electrolysis, Energy Environ. Sci., 15, 4440, 10.1039/D2EE01818G
Yoo, 2013, Carbon dioxide capture capacity of sodium hydroxide aqueous solution, J. Environ. Manag., 114, 512
Kim, 2015, Carbon dioxide capture and carbonate synthesis via carbonation of KOH-dissolved alcohol solution, J. Korean Soc. Environ. Eng., 37, 597, 10.4491/KSEE.2015.37.11.597
Zhong, 2014, Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage, J. Phys. Chem. C, 119, 55, 10.1021/jp509043h
Xie, 2023, Electrochemical transformation of limestone into calcium hydroxide and valuable carbonaceous products for decarbonizing cement production, iScience, 26, 106015, 10.1016/j.isci.2023.106015
Spurgeon, 2018, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products, Energy Environ. Sci., 11, 1536, 10.1039/C8EE00097B
Schreier, 2017, Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO, Nat. Energy, 2, 17087, 10.1038/nenergy.2017.87
Zheng, 2019, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule, 3, 265, 10.1016/j.joule.2018.10.015
Li, 2022, Chloride ion adsorption enables ampere-level CO2 electroreduction over silver hollow fiber, Angew. Chem. Int. Ed., 61
Ma, 2018, In situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion, ACS Energy Lett., 3, 1301, 10.1021/acsenergylett.8b00472
Seifitokaldani, 2018, Hydronium-induced switching between CO2 electroreduction pathways, J. Am. Chem. Soc., 140, 3833, 10.1021/jacs.7b13542
Ren, 2022, A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction, Angew. Chem. Int. Ed., 61, 10.1002/anie.202214173
Pan, 2022, Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly, ACS Energy Lett., 7, 4224, 10.1021/acsenergylett.2c02292
Li, 2019, Electrolytic conversion of bicarbonate into CO in a flow cell, Joule, 3, 1487, 10.1016/j.joule.2019.05.021
Li, 2020, Conversion of bicarbonate to formate in an electrochemical flow reactor, ACS Energy Lett., 5, 2624, 10.1021/acsenergylett.0c01291
Li, 2019, CO2 Electroreduction from carbonate electrolyte, ACS Energy Lett., 4, 1427, 10.1021/acsenergylett.9b00975
Xiao, 2021, CO2 reduction with coin catalyst, Nano Res., 15, 3859, 10.1007/s12274-021-3990-y