A correlated topic model of Science
Tóm tắt
Từ khóa
Tài liệu tham khảo
Airoldi, E., Blei, D., Fienberg, S. and Xing, E. (2007). Combining stochastic block models and mixed membership for statistical network analysis. <i>Statistical Network Analysis</i>: <i>Models</i>, <i>Issues and New Directions</i>. <i>Lecture Notes in Comput. Sci.</i> <b>4503</b> 57–74. Springer, Berlin.
Aitchison, J. (1982). The statistical analysis of compositional data (with discussion). <i>J. Roy. Statist. Soc. Ser. B</i> <b>44</b> 139–177.
Aitchison, J. (1985). A general class of distributions on the simplex. <i>J. Roy. Statist. Soc. Ser. B</i> <b>47</b> 136–146.
Aitchison, J. and Shen, S. (1980). Logistic normal distributions: Some properties and uses. <i>Biometrika</i> <b>67</b> 261–272.
Bishop, C., Spiegelhalter, D. and Winn, J. (2003). VIBES: A variational inference engine for Bayesian networks. In <i>Advances in Neural Information Processing Systems 15</i> (S. Becker, S. Thrun and K. Obermayer, eds.) 777–784. MIT Press, Cambridge, MA.
Blei, D. and Jordan, M. (2003). Modeling annotated data. In <i>Proceedings of the 26th annual International ACM SIGIR Conference on Research and Development in Information Retrieval</i> 127–134. ACM Press, New York, NY.
Blei, D. and Jordan, M. (2005). Variational inference for Dirichlet process mixtures. <i>Journal of Bayesian Analysis</i> <b>1</b> 121–144.
Blei, D., Ng, A. and Jordan, M. (2003). Latent Dirichlet allocation. <i>Journal of Machine Learning Research</i> <b>3</b> 993–1022.
Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In <i>Advances in Neural Information Processing Systems</i> <b>18</b> (Y. Weiss, B. Schölkopf and J. Platt, eds.). MIT Press, Cambridge, MA.
Erosheva, E. (2002). Grade of membership and latent structure models with application to disability survey data. Ph.D. thesis, Dept. Statistics, Carnegie Mellon Univ.
Erosheva, E., Fienberg, S. and Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. <i>Ann. Appl. Statist.</i> To appear.
Erosheva, E., Fienberg, S. and Lafferty, J. (2004). Mixed-membership models of scientific publications. <i>Proc. Natl. Acad. Sci.</i> <i>USA</i> <b>97</b> 11885–11892.
Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. <i>IEEE Computer Vision and Pattern Recognition</i> <b>2</b> 524–531.
Girolami, M. and Kaban, A. (2004). Simplicial mixtures of Markov chains: Distributed modelling of dynamic user profiles. In <i>Advances in Neural Information Procesing Systems</i> <b>16</b> 9–16. MIT Press, Cambridge, MA.
Griffiths, T. and Steyvers, M. (2004). Finding scientific topics. <i>Proc. Natl. Acad. Sci. USA</i> <b>101</b> 5228–5235.
Griffiths, T., Steyvers, M., Blei, D. and Tenenbaum, J. (2005). Integrating topics and syntax. In <i>Advances in Neural Information Processing Systems</i> <b>17</b> 537–544. MIT Press, Cambridge, MA.
Jordan, M., Ghahramani, Z., Jaakkola, T. and Saul, L. (1999). Introduction to variational methods for graphical models. <i>Machine Learning</i> <b>37</b> 183–233.
Marlin, B. (2004). Collaborative filtering: A machine learning perspective. Master's thesis, Univ. Toronto.
McCallum, A., Corrada-Emmanuel, A. and Wang, X. (2004). The author–recipient–topic model for topic and role discovery in social networks: Experiments with Enron and academic email. Technical report, Univ. Massachusetts, Amherst.
Meinshausen, N. and Bühlmann, P. (2006). High dimensional graphs and variable selection with the lasso. <i>Ann. Statist.</i> <b>34</b> 1436–1462.
Pritchard, J., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. <i>Genetics</i> <b>155</b> 945–959.
Saul, L., Jaakkola, T. and Jordan, M. (1996). Mean field theory for sigmoid belief networks. <i>Journal of Artificial Intelligence Research</i> <b>4</b> 61–76.
Sivic, J., Rusell, B., Efros, A., Zisserman, A. and Freeman, W. (2005). Discovering object categories in image collections. Technical report, CSAIL, Massachusetts Institute of Technology.
Teh, Y., Jordan, M., Beal, M. and Blei, D. (2007). Hierarchical Dirichlet processes. <i>J. Amer. Statist. Assoc.</i> <b>101</b> 1566–1581.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <i>J. R. Statist. Soc. Ser. B Stat. Methodol.</i> <b>58</b> 267–288.
Wainwright, M. and Jordan, M. (2003). Graphical models, exponential families, and variational inference. Technical Report 649, Dept. Statistics, U.C. Berkeley.
Wei, G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. <i>J. Amer. Statist. Assoc.</i> <b>85</b> 699–704.
Xing, E., Jordan, M. and Russell, S. (2003). A generalized mean field algorithm for variational inference in exponential families. In <i>Proceedings of UAI</i> 583–591. Morgan Kaufmann, San Francisco, CA.
Mosteller, F. and Wallace, D. L. (1964). <i>Inference and Disputed Authorship</i>: <i>The Federalist</i>. Addison-Wesley, Reading, MA.
Robert, C. and Casella, G. (2004). <i>Monte Carlo Statistical Methods</i>, 2nd ed. Springer, New York.
Rosen-Zvi, M., Griffiths, T., Steyvers, M. and Smith, P. (2004). The author-topic model for authors and documents. In <i>AUAI<i>'</i>04</i>: <i>Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence</i> 487–494. AUAI Press, Arlington, VA.