A coordinate-transform based FFBP algorithm for high-resolution spotlight SAR imaging

Springer Science and Business Media LLC - Tập 58 - Trang 1-11 - 2015
ZeMin Yang1, MengDao Xing1, Lei Zhang1, Zheng Bao1
1National Key Lab of Radar Signal Processing, Xidian University, Xi’an, China

Tóm tắt

This paper proposes a coordinate-transform (CT) implementation for the fast factorized backprojection (FFBP) algorithm (CT-FFBP) to process high-resolution spotlight synthetic aperture radar (SAR) data. Unlike the FFBP utilizing two-dimensional image-domain interpolation for sub-aperture fusion, CT-FFBP finishes the image-projection using CT with the accommodation of chirp-z transform and circular shifting. Without interpolation, CT-FFBP yields enhanced efficiency over the interpolation based FFBP, besides maintaining high precision simultaneously. Both simulation and real-data experiments verifies the efficiency and precision superiorities of the CT-FFBP.

Tài liệu tham khảo

Munson D, O’Brien J, Jenkins W. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc IEEE, 1983, 71: 917–925 Natterer F. The Mathematics of Computerised Tomography. New York: Wiley, 1986 Desai M, Jenkins W. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans Image Process, 1992, 1: 505–517 Jakowatz C, Wahl D, Yocky D. Beamforming as a foundation for spotlight-mode SAR image formation by backprojection. In: Proceedings of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery XV, Orlando, 2008. 69700Q Frey O, Magnard C, Rüegg M, et al. Focusing of air-borne synthetic aperture radar data from highly nonlinear flight tracks. IEEE Trans Geosci Rem Sens, 2009, 47: 1844–1858 Rodriguez-cassola M, Parts P, Krieger G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations. IEEE Trans Aerosp Electron Syst, 2011, 47: 2949–2966 Jakowatz C V, Wahl D E. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm. In: Proccedings of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, 2009. 73370A Yegulalp F. Fast backprojection algorithm for synthetic aperture radar. In: Proceedings of the IEEE Radar Conference, Waltham, 1999. 60–65 Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans Aerosp Electron Syst, 2003, 39: 760–776 Ponce O, Prats P, Rodriguez-Cassola M, et al. Processing of circular SAR trajectories with fast factorized backprojection. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011. 3692–3695 Yang Z, Sun G, Xing M. A new fast back-projection algorithm using polar format algorithm. In: Proceedings of Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, 2013. 373–376 Zhang L, Li H, Qiao Z, et al. Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging. IEEE Trans Geosci Rem Sens, 2013, 10: 1394–1398 Rabiner L, Schafer R W, Rader C M. The chirp z-transform algorithm. IEEE Trans Audio Electron, 1969, 17: 86–92 Frolind P O, Ulander L M H. Evaluation of angular interpolation kernels in fast back-projection SAR processing. IEE Proc Radar Sonar Navig, 2006, 153: 243–249