A convolutional neural network based approach to sea clutter suppression for small boat detection
Tóm tắt
Current methods for radar target detection usually work on the basis of high signal-to-clutter ratios. In this paper we propose a novel convolutional neural network based dual-activated clutter suppression algorithm, to solve the problem caused by low signal-to-clutter ratios in actual situations on the sea surface. Dual activation has two steps. First, we multiply the activated weights of the last dense layer with the activated feature maps from the upsample layer. Through this, we can obtain the class activation maps (CAMs), which correspond to the positive region of the sea clutter. Second, we obtain the suppression coefficients by mapping the CAM inversely to the sea clutter spectrum. Then, we obtain the activated range-Doppler maps by multiplying the coefficients with the raw range-Doppler maps. In addition, we propose a sampling-based data augmentation method and an effective multiclass coding method to improve the prediction accuracy. Measurement on real datasets verified the effectiveness of the proposed method.
Tài liệu tham khảo
Adolfsson L, Rahm M, 2018. Machine Learning for Categorization of Small Boats and Sea Clutter. MS Thesis, Chalmers University of Technology, Göteborg, Sweden.
Angelov A, Robertson A, Murray-Smith R, et al., 2018. Practical classification of different moving targets using automotive radar and deep neural networks. IET Radar Sonar Navig, 12(10):1082–1089. https://doi.org/10.1049/iet-rsn.2018.0103
Conte E, de Maio A, 2004. Mitigation techniques for non-Gaussian sea clutter. IEEE J Ocean Eng, 29(2):284–302.https://doi.org/10.1109/joe.2004.826901
Cui XD, Goel V, Kingsbury B, 2015. Data augmentation for deep neural network acoustic modeling. IEEE/ACM Trans Audio Speech Lang Process, 23(9):1469–1477. https://doi.org/10.1109/taslp.2015.2438544
Del-Rey-Maestre N, Jarabo-Amores MP, Mata-Moya D, 2018. Machine learning techniques for coherent CFAR detection based on statistical modeling of UHF passive ground clutter. IEEE J Sel Top Signal Process, 12(1):104–118. https://doi.org/10.1109/jstsp.2017.2780798
de Maio A, Foglia G, Conte E, 2005. CFAR behavior of adaptive detectors: an experimental analysis. IEEE Trans Aerosp Electron Syst, 41(1):233–251. https://doi.org/10.1109/taes.2005.1413759
Dong Y, 2012. Optimal coherent radar detection in a K-distributed clutter environment. IET Radar Sonar Navig, 6(5):283–292. https://doi.org/10.1049/iet-rsn.2011.0273
Farina A, Gini F, Greco MV, et al., 1997. High resolution sea clutter data: statistical analysis of recorded live data. IEE Proc Radar Sonar Navig, 144(3):121–130. https://doi.org/10.1049/ip-rsn:19971107
Fernández JRM, Vidal JDLCB, 2018. Fast selection of the sea clutter preferential distribution with neural networks. Eng Appl Artif Intell, 70:123–129. https://doi.org/10.1016/j.engappai.2018.01.008
Gilbert AC, Indyk P, Iwen M, et al., 2014. Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Process Mag, 31(5):91–100. https://doi.org/10.1109/msp.2014.2329131
Gini F, Greco MV, Diani M, et al., 2000. Performance analysis of two adaptive radar detectors against non-Gaussian real sea clutter data. IEEE Trans Aerosp Electron Syst, 36(4): 1429–1439. https://doi.org/10.1109/7.892695
Gini F, Farina A, Montanari M, 2002. Vector subspace detection in compound-Gaussian clutter. Part II: performance analysis. IEEE Trans Aerosp Electron Syst, 38(4):1312–1323. https://doi.org/10.1109/taes.2002.1145752
Greco M, Gini F, Rangaswamy M, 2006. Statistical analysis of measured Polarimetric clutter data at different range resolutions. IEE Proc Radar Sonar Navig, 153(6):473–481. https://doi.org/10.1049/ip-rsn:20060045
Greco M, Stinco P, Gini F, 2010. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance. IEEE Trans Aerosp Electron Syst, 46(3):1502–1513. https://doi.org/10.1109/taes.2010.5545205
Guan J, Chen XL, Huang Y, et al., 2012. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter. IET Radar Sonar Navig, 6(5): 389–401. https://doi.org/10.1049/iet-rsn.2011.0030
Guo Q, Yu X, Ruan GQ, 2019. LPI radar waveform recognition based on deep convolutional neural network transfer learning. Symmetry, 11(4):540. https://doi.org/10.3390/sym11040540
Hao CP, Orlando D, Foglia G, et al., 2014. Persymmetric adaptive detection of distributed targets in partially-homogeneous environment. Dig Signal Process, 24:42–51. https://doi.org/10.1016/j.dsp.2013.10.007
Hassanien H, Indyk P, Katabi D, et al., 2012. Simple and practical algorithm for sparse Fourier transform. Proc 23rd Annual ACM-SIAM Symp on Discrete Algorithms, p.17–19. https://doi.org/10.11371/9781611973099.93
Herselman PL, de Wind HJ, 2008. Improved covariance matrix estimation in spectrally inhomogeneous sea clutter with application to adaptive small boat detection. Proc IEEE Int Confon Radar, p.26–30. https://doi.org/10.1109/radar.2008.4653898
Herselman PL, Baker CJ, de Wind HJ, 2008. An analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles. Int J Navig Observ, 2008: 347518. https://doi.org/10.1155/2008/347518
Jafarzadehpour F, Molahosseini MS, Zarandi AAE, et al., 2019. Efficient modular adder designs based on thermometer and one-hot coding. IEEE Trans VLSI Syst, 27(9):2142–2155. https://doi.org/10.1109/tvlsi.2019.2919609
Jay E, Ovarlez JP, Declercq D, et al., 2002. Bayesian optimum radar detector in non-Gaussian noise. Proc 26th Int Conf on Acoustics, p.13–17. https://doi.org/10.1109/ICASSP.2002.5744038
Khan A, Sohail A, Zahoora U, et al., 2019. A survey of the recent architectures of deep convolutional neural networks. https://arxiv.org/abs/1901.06032
Kong SH, Kim M, Hoang LM, et al., 2018. Automatic LPI radar waveform recognition using CNN. IEEE Access, 6:4207–4219. https://doi.org/10.1109/access.2017.2788942
Lamont-Smith T, 2008. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle. IET Radar Sonar Navig, 2(2):97–103. https://doi.org/10.1049/iet-rsn:20070099
Lei YM, Tian YK, Shan HM, et al., 2020. Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping. Med Image Anal, 60:101628. https://doi.org/10.1016/j.media.2019.101628
Li Y, He MK, Zhang N, 2017. An ionospheric clutter recognition method based on machine learning. Proc IEEE Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, p.9–14. https://doi.org/10.1109/apusncursinrsm.2017.8072861
Li YZ, Xie PC, Tang ZS, et al., 2019. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach. IEEE Geosci Remote Sens Lett, 16(8):1225–1229. https://doi.org/10.1109/lgrs.2019.2894385
Liu C, Wang J, Liu XM, et al., 2019. Deep CM-CNN for spectrum sensing in cognitive radio. IEEE J Sel Areas Commun, 37(10):2306–2321. https://doi.org/10.1109/jsac.2019.2933892
Liu J, Zhang ZJ, Yang Y, 2012. Performance enhancement of subspace detection with a diversely polarized antenna. IEEE Signal Process Lett, 19(1):4–7. https://doi.org/10.1109/lsp.2011.2173485
Liu NB, Xu YN, Ding H, et al., 2019. High-dimensional feature extraction of sea clutter and target signal for intelligent maritime monitoring network. Comput Commun, 147:76–84. https://doi.org/10.1016/j.comcom.2019.08.016
Liu S, Huang WM, Zhang Z, 2020. Person re-identification using hybrid task convolutional neural network in camera sensor networks. Ad Hoc Netw, 97:102018. https://doi.org/10.1016/j.adhoc.2019.102018
Long J, Shelhamer E, Darreil T, 2015. Fully convolutional networks for semantic segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.8–10. https://doi.org/10.1109/cvpr.2015.7298965
Lv MJ, Zhou C, 2019. Study on sea clutter suppression methods based on a realistic radar dataset. Remote Sens, 11(23):2721. https://doi.org/10.3390/rs11232721
Ma LW, Wu JJ, Zhang JP, et al., 2020. Research on sea clutter reflectivity using deep learning model in Industry 4.0. IEEE Trans Ind Inform, 16(9):5929–5937. https://doi.org/10.1109/tii.2019.2957379
Mahdi A, Qin J, 2019. An extensive evaluation of deep featuresof convolutional neural networks for saliency prediction of human visual attention. J Vis Commun Image Represent, 65:102662. https://doi.org/10.1016/j.jvcir.2019.102662
McDonald AM, de Wind HJ, Cilliers JE, 2010. Performance prediction for a coherent X-band radar in a maritime environment with K-distributed sea clutter. Proc IEEE Int Confon Radar, p.1208–1213. https://doi.org/10.1109/radar.2010.5494436
McDonald MK, Cerutti-Maori D, 2016. Coherent radar processing in sea clutter environments, part 2: adaptive normalised matched filter versus adaptive matched filter performance. IEEE Trans Aerosp Electron Syst, 52(4): 1818–1833. https://doi.org/10.1109/taes.2016.140898
Pang CS, Liu SH, Han Y, 2018. High-speed target detection algorithm based on sparse Fourier transform. IEEE Access, 6:37828–37836. https://doi.org/10.1109/access.2018.2853180
Ritchie M, Stove A, Woodbridge K, et al., 2016. NetRAD: monostatic and bistatic sea clutter texture and Doppler spectra characterization at S-band. IEEE Trans Geosci Remote Sens, 54(9):5533–5543. https://doi.org/10.1109/tgrs.2016.2567598
Rosenberg L, Watts S, Greco MS, 2019. Modeling the statistics of microwave radar sea clutter. IEEE Aerosp Electron Syst Mag, 34(10):44–75. https://doi.org/10.1109/maes.2019.2901562
Sangston KJ, Gini F, Greco MS, 2012. Coherent radar target detection in heavy-tailed compound-Gaussian clutter. IEEE Trans Aerosp Electron Syst, 48(1):64–77. https://doi.org/10.1109/taes.2012.6129621
Sekine M, Musha T, Tomita Y, et al., 1983. Weibull-distributed sea clutter. IEE Proc F Commun Radar Signal Process, 130(5):476. https://doi.org/10.1049/ip-f-1.1983.0076
Shi SN, Liang X, Shui PL, et al., 2019. Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode. IEEE Trans Geosci Remote Sens, 57(11):8937–8953. https://doi.org/10.1109/tgrs.2019.2923790
Shnidman DA, 1999. Generalized radar clutter model. IEEE Trans Aerosp Electron Syst, 35(3):857–865. https://doi.org/10.1109/7.784056
Shui PL, Liu M, 2016. Subband adaptive GLRT-LTD for weak moving targets in sea clutter. IEEE Trans Aerosp Electron Syst, 52(1):423–437. https://doi.org/10.1109/taes.2015.140783
Shui PL, Shi YL, 2012. Subband ANMF detection of moving targets in sea clutter. IEEE Trans Aerosp Electron Syst, 48(4):3578–3593. https://doi.org/10.1109/taes.2012.6324742
Su NY, Chen XL, Guan J, et al., 2019. Deep CNN-based radar detection for real maritime target under different sea states and polarizations. Proc 4 Int Conf on Cognitive Systems and Signal Processing, p.321–331. https://doi.org/10.1007/978-981-13-7986-4_29
Trunk GV, George SF, 1970. Detection of targets in non-Gaussian sea clutter. IEEE Trans Aerosp Electron Syst, ASE-6(5):620–628. https://doi.org/10.1109/taes.1970.310062
Walker D, 2000. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea clutter at small grazing angles. IEE Proc Radar Sonar Navig, 147(3):114–120. https://doi.org/10.1049/ip-rsn:20000386
Walker D, 2001. Doppler modelling of radar sea clutter. IEE Proc Radar Sonar Navig, 148(2):73–80. https://doi.org/10.1049/ip-rsn:20010182
Wang C, Wang J, Zhang XD, 2017. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.5–9. https://doi.org/10.1109/icassp.2017.7952594
Wang L, Tang J, Liao QM, 2019. A study on radar target detection based on deep neural networks. IEEE Sens Lett, 3(3):7000504. https://doi.org/10.1109/lsens.2019.2896072
Wang SG, Patel VM, Petropulu A, 2016. RSFT: a realistic high dimensional sparse Fourier transform and its application in radar signal processing. Proc IEEE Military Communications Conf, p.1–3. https://doi.org/10.1109/milcom.2016.7795442
Wang WP, Feng Y, Shan T, 2019. A sea clutter suppression method using improved time-frequency filtering method. J Signal Process, 35(2):208–216 (in Chinese). https://doi.org/10.16798/j.issn.1003-0530.2019.02.006
Ward KD, 1981. Compound representation of high resolution sea clutter. Electr Lett, 17(16):561–563. https://doi.org/10.1049/el:19810394
Watts S, 1996. Cell-averaging CFAR gain in spatially correlated K-distributed clutter. IET Radar Sonar Navig, 143(5):321–327. https://doi.org/10.1049/ip-rsn:19960745
Watts S, Ward KD, 1987. Spatial correlation in K-distributed sea clutter. IEE Proc F Commun Radar Signal Process, 134(6):526–532. https://doi.org/10.1049/ip-f-1.1987.0090
Weinberg GV, 2012. Suboptimal coherent radar detection in a KK-distributed clutter environment. Signal Process, 2012: 614653. https://doi.org/10.5402/2012/614653
Wu J, Wang T, Meng X, et al., 2010. Clutter suppression for airborne non-sidelooking radar using ERCB-STAP algorithm. IET Radar Sonar Navig, 4(4):497–506. https://doi.org/10.1049/iet-rsn.2009.0121
Yang H, Min K, 2019. A deep approach for classifying artistic media from artworks. KSII Trans Int Inform Syst, 13(5): 2558–2573. https://doi.org/10.3837/tiis.2019.05.018
Yasotharan A, Thayaparan T, 2006. Time-frequency method for detecting an accelerating target in sea clutter. IEEE Trans Aeros Electron Syst, 42(4):1289–1310. https://doi.org/10.1109/taes.2006.314573
Yu XH, Chen XL, Huang Y, et al., 2019. Radar moving target detection in clutter background via adaptive dual-threshold sparse Fourier transform. IEEE Access, 7:58200–58211. https://doi.org/10.1109/access.2019.2914232
Zhang L, You W, Wu QMJ, et al., 2018. Deep learning-based automatic clutter/interference detection for HFSWR. Remote Sens, 10(10): 1517. https://doi.org/10.3390/rs10101517
Zhang RY, Cao SY, 2019. Real-time human motion behavior detection via CNN using mmWave radar. IEEE Sens Lett, 3(2):3500104. https://doi.org/10.1109/lsens.2018.2889060
Zhao JF, Jiang RK, Wang XT, et al., 2019. Robust CFAR detection for multiple targets in K-distributed sea clutter based on machine learning. Symmetry, 11(12):1482. https://doi.org/10.3390/sym11121482
Zhao JR, Wen BY, Tian YW, et al., 2019. Sea clutter suppression for shipborne HF radar using cross-loop/monopole array. IEEE Geosci Remote Sens Lett, 16(6): 879–893. https://doi.org/10.1109/lgrs.2018.2884507
Zhou BL, Khosla A, Lapedriza A, et al., 2016. Learning deep features for discriminative localization. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2921–2929. https://doi.org/10.1109/cvpr.2016.319