A contraction algorithm for finding small cycle cutsets
Tài liệu tham khảo
Karp, 1972, Reducibility among combinatorial problems, “Complexity of Computer Computations”, 85
Shamir, 1979, A linear time algorithm for finding minimum cutsets in reducible graphs, SIAM J. Comput., 8, 645, 10.1137/0208051
Rosen, 1982, Robust linear algorithms for cutsets, J. Algorithms, 3, 205, 10.1016/0196-6774(82)90020-7
Wang, 1985, Feedback vertex sets and cyclically reducible graphs, J. Assoc. Comput. Mach., 32, 296, 10.1145/3149.3159
Lloyd, 1984, Feedback vertex sets in polynomial time—A new class, 291
Smith, 1975, The identification of a minimal feedback vertex set of a directed graph, IEEE Trans. Circuits Systems, 9, 10.1109/TCS.1975.1083961
E. L. Lloyd, M. L. Soffa, and C.-C. Wang, “On Locating Minimum Feedback Vertex Sets,” Technical Report 87-4, Department of Computer Science, University of Pittsburgh.
Levy, 1984, A contraction algorithm for finding small cycle cutsets, 488
Bhat, 1979, Optimum tearing in large scale systems and minimum feedback cutsets of digraph, J. Franklin Inst., 307, 83, 10.1016/0016-0032(79)90024-3
Ramachandran, 1985
Hecht, 1974, Characterization of reducible flow graphs, J. Assoc. Comput. Mach., 21, 367, 10.1145/321832.321835
Hecht, 1972, Flow graph reducibility, SIAM J. Comput., 1, 188, 10.1137/0201014
Hopcroft, 1972, An n log n algorithm for detecting reducible graphs
Tarjan, 1972, Depth first search and linear graph algorithms, SIAM J. Comput., 146, 10.1137/0201010
Aho, 1972, Code optimization and finite Church-Rosser systems, 89
Levy, 1983
Levy, 1986, A comparison of low complexity algorithms for finding small cycle cutsets, 49
Aho, 1973