A constructive proof of Ky Fan's generalization of Tucker's lemma
Tài liệu tham khảo
Borsuk, 1933, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20, 177, 10.4064/fm-20-1-177-190
Cohen, 1979, On the combinatorial antipodal-point lemmas, J. Combin. Theory Ser. B, 27, 87, 10.1016/0095-8956(79)90071-6
DeLoera, 2002, A polytopal generalization of Sperner's lemma, J. Combin. Theory Ser. A, 100, 1, 10.1006/jcta.2002.3274
Fan, 1952, A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math., 56, 431, 10.2307/1969651
Fan, 1967, Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation, J. Combin. Theory, 2, 588, 10.1016/S0021-9800(67)80063-2
Freund, 1981, A constructive proof of Tucker's combinatorial lemma, J. Combin. Theory Ser. A, 30, 321, 10.1016/0097-3165(81)90027-3
S. Lefschetz, Introduction to Topology, Princeton Mathematical Series, vol. 11, Princeton University Press, Princeton, NJ, 1949, pp. 134–141.
Matoušek, 2004, A combinatorial proof of Kneser's conjecture, Combinatorica, 24, 163, 10.1007/s00493-004-0011-1
Simmons, 2003, Consensus-halving via theorems of Borsuk–Ulam and Tucker, Math. Social Sci., 45, 15, 10.1016/S0165-4896(02)00087-2
M.J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems, vol. 124, Springer, Berlin, 1976.
Tucker, 1946, Some topological properties of disk and sphere, 285
Z. Yang, Computing equilibria and fixed points, Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, vol. 21, Kluwer Academic Publishers, Boston, MA, 1999 (The solution of nonlinear inequalities).
G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer, New York, 1995.