A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
Tài liệu tham khảo
Albers, 1996, The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations, Mar. Chem., 55, 347, 10.1016/S0304-4203(96)00059-X
Ambroset C., Petit M., Brion C., Sanchez I., Delobel P., Guérin C., Chiapello H., Nicolas P., Bigey F., Dequin S., Blondin B., 2011. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 doi:101534/g3111000422.
Anderlund, 1999, Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation, Appl. Environ. Microbiol., 65, 2333, 10.1128/AEM.65.6.2333-2340.1999
Bakker, 2000, The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae, J. Bacteriol., 182, 4730, 10.1128/JB.182.17.4730-4737.2000
Bakker, 2001, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 25, 15, 10.1111/j.1574-6976.2001.tb00570.x
Blank, 2005, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast, Genome Biol, 6, R49, 10.1186/gb-2005-6-6-r49
Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/o59-099
Blomberg, 1992, Physiology of osmotolerance in fungi, Adv. Microb. Physiol., 33, 145, 10.1016/S0065-2911(08)60217-9
Boles, 1993, The role of the NAD dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant, Eur. J. Biochem, 217, 469, 10.1111/j.1432-1033.1993.tb18266.x
Boy-Marcotte, 1999, The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons, Mol. Microbiol., 33, 274, 10.1046/j.1365-2958.1999.01467.x
Boyd, 2004
Bruinenberg, 1983, A theoretical analysis of NADPH production and consumption in yeasts, J. Gen. Microbiol., 129, 953
Bruinenberg, 1986, The NADP(H) redox couple in yeast metabolism, AntonieLeeuwenhoek, 5, 411
Camarasa, 2011, Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits, PLoS ONE, 6, e25147, 10.1371/journal.pone.0025147
Cortassa, 1995, Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources, Biotechnol. Bioeng., 47, 193, 10.1002/bit.260470211
Costenoble, 2000, Microaerobic glycerol formation in Saccharomyces cerevisiae, Yeast, 16, 483, 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
Ehsani, 2009, Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis, Biotechnol. Bioeng., 104, 381, 10.1002/bit.22391
Ehsani, 2009, Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae, Appl. Environ. Microbiol., 75, 3196, 10.1128/AEM.02157-08
Forster, 2003, Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network, Genome Res., 13, 244, 10.1101/gr.234503
Frick, 2005, Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis, Microb. Cell Fact, 4, 30, 10.1186/1475-2859-4-30
Gasch, 2000, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell., 11, 4241, 10.1091/mbc.11.12.4241
Godon, 1998, The H2O2 stimulon in Saccharomyces cerevisiae, J. Biol. Chem., 273, 22480, 10.1074/jbc.273.35.22480
Gonzalez, 2000, Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene, J. Biol. Chem., 275, 35876, 10.1074/jbc.M003035200
Grabowska, 2003, The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity, J. Biol. Chem., 278, 13984, 10.1074/jbc.M210076200
Hagenauer-Hener, 1990, Direct determination of 2,3-butanediol stereoisomers in wine, Dtsch. Lebensm.-Rundsch, 86, 273
Herbert, 1971, Chemical analysis of microbial cells, Methods Microbiol., 58, 344
Herrero, 2008, Redox control and oxidative stress in yeast cells, Bioch. Biophys. Acta, 1780, 1217, 10.1016/j.bbagen.2007.12.004
Heux, 2006, Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism, Metab. Eng., 8, 303, 10.1016/j.ymben.2005.12.003
Hohmann, 2002, Osmotic stress signaling and osmoadaptation in yeasts, Microbiol. Mol. Biol. Rev., 2, 300, 10.1128/MMBR.66.2.300-372.2002
Hou, 2009, Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae, Metabol. Eng., 11, 253, 10.1016/j.ymben.2009.05.001
Kim, 1998, d-arabinose dehydrogenase ans its gene from Saccharomyces cerevisiae, Biochim. Biophys. Acta., 1429, 29, 10.1016/S0167-4838(98)00217-9
Kuhn, 1995, Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae, Appl. Environ. Microbiol., 61, 1580, 10.1128/AEM.61.4.1580-1585.1995
Lagunas, 1973, Reduced pyridine nucleotides balance in glucose growing Saccharomyces cerevisiae, Eur. J. Biochem., 37, 90, 10.1111/j.1432-1033.1973.tb02961.x
Lange, 2001, Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae, Biotechnol. Bioeng., 75, 334, 10.1002/bit.10054
Larochelle, 2006, Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production, Mol. Cell. Biol., 26, 6690, 10.1128/MCB.02450-05
Leão, 1984, Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 774, 43, 10.1016/0005-2736(84)90272-4
Llobell, 1988, Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG, Biochem. J, 249, 293, 10.1042/bj2490293
Ma, 2010, Mechanisms of ethanol tolerance in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 87, 829, 10.1007/s00253-010-2594-3
Martínez-Muñoz, 2008, Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast, J. Biol. Chem., 283, 20309, 10.1074/jbc.M710470200
Meaden, 1997, The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+ activated acetaldehyde dehydrogenase, Yeast, 13, 1319, 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T
Minard, 2005, Sources of NADPH in yeast vary with carbon source, J. Biol. Chem., 280, 39890, 10.1074/jbc.M509461200
Molin, 2003, Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone, J. Biol. Chem., 278, 1415, 10.1074/jbc.M203030200
Moreira dos Santos, 2004, Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments, Met. Eng., 6, 352, 10.1016/j.ymben.2004.06.002
Nakamura, 1997, Amino acid sequence and characterization of aldo–keto reductase from baker's yeast, Biosci. Biotechnol. Biochem, 61, 375, 10.1271/bbb.61.375
Nesterov, 2004
Nevoigt, 2008, Progress in metabolic engineering of Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev, 72, 379, 10.1128/MMBR.00025-07
Nissen, 1997, Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae, Microbiology, 143, 203, 10.1099/00221287-143-1-203
Nissen, 2001, Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool, Yeast, 18, 19, 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5
Nookaew, 2008, The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism, BMC Syst. Biol., 2, 71, 10.1186/1752-0509-2-71
Norbeck, 1997, Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl, J. Biol. Chem., 272, 5544, 10.1074/jbc.272.9.5544
Nordström, 1968, Yeast growth and glycerol formation. II. Carbon and redox balances, J. Inst. Brew., 74, 429, 10.1002/j.2050-0416.1968.tb03154.x
Oechsner, 1988, A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein, FEBS Lett., 238, 123, 10.1016/0014-5793(88)80240-0
Orij, 2011, Intracellular pH is a tightly controlled signal in yeast, Biochim. Biophys. Acta, 1810, 933, 10.1016/j.bbagen.2011.03.011
Oura, 1977, Reaction products of yeast fermentations, Process Biochem., 12, 19
Penninckx, 2002, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res., 2, 295
Rajakumari, 2008, Synthesis and turnover of non-polar lipids in yeast, Prog. Lipid Res., 47, 157, 10.1016/j.plipres.2008.01.001
Remize, 2003, Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway, Yeast, 20, 1243, 10.1002/yea.1041
Remize, 1999, Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase, Appl. Environ. Microbiol., 65, 143, 10.1128/AEM.65.1.143-149.1999
Roustan, 2002, Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics, J. Biosci. Bioeng., 93, 367, 10.1016/S1389-1723(02)80069-X
Saint-Prix, 2004, Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation, Microbiology, 150, 2209, 10.1099/mic.0.26999-0
Sainz, 2003, Modeling of yeast metabolism and process dynamics in batch fermentation, Biotechnol. Bioeng., 81, 818, 10.1002/bit.10535
Sambrook, 1989
Sazanov, 1994, Proton-translocating transhydrogenase and NAD-and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria, FEBS Lett, 344, 109, 10.1016/0014-5793(94)00370-X
Scanes, 1998, Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review, S. Afr. J. Enol. Vitic, 19, 17
Schiestl, 1989, High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier, Curr. Genet, 16, 339, 10.1007/BF00340712
Slekar, 1996, The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection, J. Biol. Chem., 271, 28831, 10.1074/jbc.271.46.28831
Valadi, 2004, Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production, J. Biol. Chem., 279, 39677, 10.1074/jbc.M403310200
Vallino, 1993, Metabolic flux distributions in corynebacteríum gluticum during growth and lysine overproduction, Biotechnol. Bioeng., 41, 633, 10.1002/bit.260410606
van Dijken, 1986, Redox balances in the metabolism of sugars by yeasts, FEMS Microbiol. Lett., 32, 199, 10.1111/j.1574-6968.1986.tb01194.x
Vaseghi, 1999, In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae, Metab. Eng., 1, 128, 10.1006/mben.1998.0110
Verduyn, 1990, Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures, J. Gen. Microbiol., 136, 395, 10.1099/00221287-136-3-395
Verduyn, 1991, A theoretical evaluation of growth yields of yeasts, Antonie Leeuwenhoek, 59, 49, 10.1007/BF00582119
Vido, 2001, A proteome analysis of the cadmium response in Saccharomyces cerevisiae, J. Biol. Chem., 276, 8469, 10.1074/jbc.M008708200
von Jagow, 1970, Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis, Eur. J. Biochem., 12, 583, 10.1111/j.1432-1033.1970.tb00890.x
Zhao, 2003, Regeneration of cofactors for use in biocatalysis, Curr. Opin. Biotechnol., 14, 583, 10.1016/j.copbio.2003.09.007