A constant pressure dust explosion experiment

Trygve Skjold1,2, Kjetil L. Olsen1,2, Diana Castellanos3
1GEXCON AS, Bergen, Norway
2University of Bergen, Bergen, Norway
3Texas A&M University College Station, TX USA

Tài liệu tham khảo

ASTM E-1226, 2010 Brossard, J., Desbordes, D., Difabio, N., Garnier, J. L., Lannoy, A., Leyer, J. C., et al. (1985). Truly unconfined deflagrations of ethylene–air mixtures. In: Tenth international colloquium on the dynamics of explosions and reactive systems (ICDERS). Berkeley, California. Brown, 1962 Cassel, H. M., Das Gupta, A. K., & Guruswamy, S. (1949). Factors affecting flame propagation through dust clouds. In: Third symposium on combustion and flame and explosion phenomena, pp. 185–190. Cloney, C. T., Ripley, R. C., Amyotte, P. R., & Khan, F. I. (2012). Quantifying the effect of strong ignition sources on particle preconditioning and distribution in the 20-L chamber. In: Ninth international symposium on hazards, prevention and mitigation of industrial explosions (ISHPMIE), 22–27 July 2012. Krakow, Poland, 19 pp. Dahoe, A. E. (2000). Dust explosions: a study of flame propagation. PhD-thesis, Delft University of Technology, Delft, Holland. Dahoe, 2002, Determination of the laminar burning velocity and the Markstein length of powder-air flames, Powder Technology, 122, 222, 10.1016/S0032-5910(01)00419-3 Dahoe, 1996, Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’, Journal of Loss Prevention in the Process Industries, 9, 33, 10.1016/0950-4230(95)00054-2 Dyduch, Z., & Skjold, T. (2010). An assessment of the laminar burning velocity in dust/air mixtures based on a model for dust explosions in closed 20-litre vessels. In: Eighth international symposium on hazards, prevention and mitigation of industrial explosions (ISHPMIE), 5–10 September 2010. Yokohama, Japan, 11 pp. Eckhoff, 2003 EN 14034-1, 2004 EN 14034-2, 2006 Fiock, 1935 Han, 2000, Behavior of flames propagating through lycopodium dust clouds in a vertical duct, Journal of Loss Prevention in the Process Industries, 13, 449, 10.1016/S0950-4230(99)00072-8 Han, 2001, A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' behavior, Journal of Loss Prevention in the Process Industries, 14, 153, 10.1016/S0950-4230(00)00049-8 ISO 6184-1, 1985 Leyer, 1974, Flame propagation in small spheres of unconfined and slightly confined flammable mixtures, Proceedings of the Combustion Institute, 15, 645, 10.1016/S0082-0784(75)80335-3 Lind, 1977 Milne, 1926 Pedersen, 1994 Pickering, 1951, Burning velocity determinations: part VI – the use of Schlieren photography in determining burning velocities by the soap bubble method, Transactions of the Faraday Society, 47, 989, 10.1039/TF9514700989 Proust, 2006, Flame propagation and combustion in some dust–air mixtures, Journal of Loss Prevention in the Process Industries, 19, 89, 10.1016/j.jlp.2005.06.026 Pu, Y. K. (1988). Fundamental characteristics of laminar and turbulent flames in cornstarch dust–air mixtures. PhD thesis, McGill University, Montreal. Scheid, M., Kusche, C., Schröder, V., & Barth, U. (2012). Test on the suitability of the ignition source “Exploding wire” for the determination of the explosion characteristics of combustible dust in the 20 l sphere. In: Ninth international symposium on hazards, prevention and mitigation of industrial explosions (ISHPMIE), 22–27 July 2012, Krakow, Poland, 13 pp. Schneider, 2007, Determination of turbulent burning velocities of dust–air mixtures with the open tube method, Journal of Loss Prevention in the Process Industries, 20, 470, 10.1016/j.jlp.2007.04.035 Siwek, R. (1977). 20-L Laborapparatur für die Bestimmung der Explosionskenngrößen brennbarer Stäube. Thesis, HTL Winterthur, Switzerland. Skjold, T. (2003). Selected aspects of turbulence and combustion in 20-litre explosion vessels. MSc Thesis, Depart. Physics, University of Bergen, Bergen, Norway, 324 pp. Skjold, 2007, Review of the DESC project, Journal of Loss Prevention in the Process Industries, 20, 291, 10.1016/j.jlp.2007.04.017 Skjold, T. (2010). Flame propagation in dust clouds: challenges for model validation. In: Eighth international symposium on hazards, prevention and mitigation of industrial explosions (ISHPMIE), 5–10 September 2010, Yokohama, Japan, 11 pp. Skjold, 2006, Simulation of dust explosions in complex geometries with experimental input from standardized tests, Journal of Loss Prevention in the Process Industries, 19, 210, 10.1016/j.jlp.2005.06.005 Skjold, T., Castellanos, D., Olsen, K. L., & Eckhoff, R. K. (2012). Experimental and numerical investigations of constant volume dust and gas explosions in a 3.6 metre flame acceleration tube. In: Ninth international symposium on hazards, prevention and mitigation of industrial explosions (ISHPMIE), 22–27 July 2012, Krakow, Poland, 22 pp. Skjold, T., & Eckhoff, R. K. (2006). A balloon experiment for dust explosions. In: Poster, thirty-first international symposium on combustion, 6–11 August 2006, Heidelberg, 606. Stevens, 1923 Strehlow, 1953, An improved soap bubble method of measuring flame velocities, Proceedings of the Combustion Institute, 4, 329, 10.1016/S0082-0784(53)80043-3 Tang, 2011, Modes of particle combustion in iron dust flames, Proceedings of the Combustion Institute, 33, 1975, 10.1016/j.proci.2010.06.088