A computational Framework for generating rotation invariant features and its application in diffusion MRI
Tài liệu tham khảo
Aboitiz, 1992, Fiber composition of the human corpus callosum, Brain Res., 598, 143, 10.1016/0006-8993(92)90178-C
Alexander, 2010, Orientationally invariant indices of axon diameter and density from diffusion MRI, Neuroimage, 52, 1374, 10.1016/j.neuroimage.2010.05.043
Anderson, 2005, Measurement of fiber orientation distributions using high angular resolution diffusion imaging, Magn. Reson. Med., 54, 1194, 10.1002/mrm.20667
Assaf, 2008, Axcaliber: a method for measuring axon diameter distribution from diffusion mri, Magn. Reson. Med., 59, 1347, 10.1002/mrm.21577
Basser, 1994, MR Diffusion tensor spectroscopy and imaging., Biophys. J., 66, 259, 10.1016/S0006-3495(94)80775-1
Baxansky, 2007, Calculating geometric properties of three-dimensional objects from the spherical harmonic representation, Pattern Recognit., 40, 756, 10.1016/j.patcog.2006.06.001
Caruyer, 2013, Design of multishell sampling schemes with uniform coverage in diffusion mri, Magn. Reson. Med., 69, 1534, 10.1002/mrm.24736
Caruyer, 2015, On facilitating the use of hardi in population studies by creating rotation-invariant markers, Med. Image Anal., 20, 87, 10.1016/j.media.2014.10.009
Coelho, 2018, Double diffusion encoding prevents degeneracy in parameter estimation of biophysical models in diffusion mri
Descoteaux, 2007, Regularized, fast, and robust analytical q-ball imaging, Magn. Reson. Med., 58, 497, 10.1002/mrm.21277
Edén, 2003, Computer simulations in solid-state nmr. iii. powder averaging, Concepts Magn. Reson. Part A: Educ. J., 18, 24, 10.1002/cmr.a.10065
Ehrenborg, 1993, Apolarity and canonical forms for homogeneous polynomials, Eur. J. Combinatorics, 14, 157, 10.1006/eujc.1993.1022
Fischl, 2002, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, 33, 341, 10.1016/S0896-6273(02)00569-X
Frank, 2002, Characterization of anisotropy in high angular resolution diffusion-weighted mri, Magn. Reson. Med., 47, 1083, 10.1002/mrm.10156
Ghosh, 2012, Biomarkers for hardi: 2nd amp; 4th order tensor invariants, 26
Ghosh, 2012, Generalized invariants of a 4th order tensor: Building blocks for new biomarkers in dmri
Homeier, 1996, Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients, Journal of Molecular Structure: THEOCHEM, 368, 31, 10.1016/S0166-1280(96)90531-X
Jelescu, 2016, Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue, NMR in Biomedicine, 29, 33, 10.1002/nbm.3450
Jespersen, 2010, Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy, Neuroimage, 49, 205, 10.1016/j.neuroimage.2009.08.053
Jespersen, 2007, Modeling dendrite density from magnetic resonance diffusion measurements, Neuroimage, 34, 1473, 10.1016/j.neuroimage.2006.10.037
Kaden, 2016, Multi-compartment microscopic diffusion imaging, Neuroimage, 139, 346, 10.1016/j.neuroimage.2016.06.002
Kaden, 2016, Quantitative mapping of the per-axon diffusion coefficients in brain white matter, Magn. Reson. Med., 75, 1752, 10.1002/mrm.25734
Kakarala, 2010, A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations, 105
Kayal, 2009, The complexity of the annihilating polynomial, 184
Kondor, 2007, A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum
Kullback, 1951, On information and sufficiency, Ann. Math. Statist., 22, 79, 10.1214/aoms/1177729694
Lampinen, 2017, Neurite density imaging versus imaging of microscopic anisotropy in diffusion mri: a model comparison using spherical tensor encoding, Neuroimage, 147, 517, 10.1016/j.neuroimage.2016.11.053
McKinnon, 2017, Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain, Magn. Reson. Imaging, 36, 121, 10.1016/j.mri.2016.10.026
Novikov, 2016, Quantifying brain microstructure with diffusion mri: theory and parameter estimation
Novikov, 2018, Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri, Neuroimage, 174, 518, 10.1016/j.neuroimage.2018.03.006
Novikov, 2018, Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri, Neuroimage, 174, 518, 10.1016/j.neuroimage.2018.03.006
Özarslan, 2013, Mean apparent propagator (map) mri: a novel diffusion imaging method for mapping tissue microstructure, Neuroimage, 78, 16, 10.1016/j.neuroimage.2013.04.016
Özarslan, 2003, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging, Magn. Reson. Med., 50, 955, 10.1002/mrm.10596
Özarslan, 2005, Generalized scalar measures for diffusion mri using trace, variance, and entropy, Magn. Reson. Med, 53, 866, 10.1002/mrm.20411
Papadopoulo, 2014, Complete set of invariants of a 4th order tensor: the 12 tasks of hardi from ternary quartics, 233
Reisert, 2016, Disentangling micro from mesostructure by diffusion mri: a bayesian approach, Neuroimage
Santis, 2011, Non-gaussian diffusion imaging: a brief practical review, Magnetic Resonance Imaging, 29, 1410, 10.1016/j.mri.2011.04.006
Schultz, 2014, Higher-order tensors in diffusion imaging, 129
Schwab, 2013, Rotation invariant features for hardi, 705
Schwartz, 1980, Fast probabilistic algorithms for verification of polynomial identities, J. ACM, 27, 701, 10.1145/322217.322225
Sotiropoulos, 2013, Advances in diffusion MRI acquisition and processing in the human connectome project, Neuroimage, 80, 125, 10.1016/j.neuroimage.2013.05.057
Tournier, 2007, Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution, Neuroimage, 35, 1459, 10.1016/j.neuroimage.2007.02.016
Tournier, 2004, Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution, Neuroimage, 23, 1176, 10.1016/j.neuroimage.2004.07.037
Zhang, 2012, NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain, Neuroimage, 61, 1000, 10.1016/j.neuroimage.2012.03.072
Zippel, 1979, Probabilistic algorithms for sparse polynomials, 216
Zucchelli, 2017, Noddi-sh: a computational efficient noddi extension for fodf estimation in diffusion mri
Zucchelli, 2018, A Generalized Smt-based Framework for Diffusion Mri Microstructural Model Estimation, 51
Zucchelli, 2018, A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI