A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aben E. NLANR PMA data. 2010. https://labs.ripe.net/datarepository/data-sets/nlanr-pma-data . Accessed 27 Dec 2017.
Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann machines. Cogn Sci. 1985; 9(1):147–69.
ACM Special Interest Group on KDD. KDD cup archives. 2016. http://www.kdd.org/kdd-cup . Accessed 22 Nov 2017.
Adda M, Qader K, Al-Kasassbeh M. Comparative analysis of clustering techniques in network traffic faults classification. Int J Innov Res Comput Commun Eng. 2017; 5(4):6551–63.
Adeel A, Larijani H, Javed A, Ahmadinia A. Critical analysis of learning algorithms in random neural network based cognitive engine for lte systems. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st. IEEE: 2015. p. 1–5.
Ahmed T, Coates M, Lakhina A. Multivariate online anomaly detection using kernel recursive least squares.IEEE; 2007. pp. 625–33.
Ahn CW, Ramakrishna RS. Qos provisioning dynamic connection-admission control for multimedia wireless networks using a hopfield neural network. IEEE Trans Veh Technol. 2004; 53(1):106–117.
Aizenberg IN, Aizenberg NN, Vandewalle JP. Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Norwell: Kluwer Academic Publishers; 2000.
Akan OB, Akyildiz IF. ATL: an adaptive transport layer suite for next-generation wireless internet. IEEE J Sel Areas Commun. 2004; 22(5):802–17.
Albus JS. A new approach to manipulator control: the cerebellar model articulation controller (cmac). J Dyn Syst Meas. Control. 1975; 97:220–7.
Alhoniemi E, Himberg J, Parhankangas J, Vesanto J. S.o.m toolbox; 2000. http://www.cis.hut.fi/projects/somtoolbox/ . Accessed 28 Dec 2017.
Allman M, Paxson V, Blanton E. TCP Congestion Control. RFC 5681, Internet Engineering Task Force. 2009. https://tools.ietf.org/html/rfc5681 .
Alom MZ, Bontupalli V, Taha TM. Intrusion detection using deep belief networks. In: Aerospace and Electronics Conference (NAECON), 2015 National. IEEE: 2015. p. 339–44.
Alpaydin E. Introduction to Machine Learning, 2nd ed. Cambridge: MIT Press; 2010.
Alpaydin E. Introduction to Machine Learning, 3rd ed. Cambridge: MIT Press; 2014.
Alshammari R, Zincir-Heywood AN. Machine learning based encrypted traffic classification: Identifying ssh and skype. In: Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE: 2009. p. 1–8.
Alsheikh MA, Lin S, Niyato D, Tan HP. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun Surv Tutor. 2014; 16(4):1996–2018.
Amaral P, Dinis J, Pinto P, Bernardo L, Tavares J, Mamede HS. Machine learning in software defined networks: Data collection and traffic classification. In: Network Protocols (ICNP), 2016 IEEE 24th International Conference on. IEEE: 2016. p. 1–5.
Amor NB, Benferhat S, Elouedi Z. Naive bayes vs decision trees in intrusion detection systems. In: Proceedings of the 2004 ACM symposium on Applied computing. ACM: 2004. p. 420–4.
Arndt D. HOW TO: Calculating Flow Statistics Using NetMate. 2016. https://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/ . Accessed 01 Aug 2017.
Arouche Nunes BA, Veenstra K, Ballenthin W, Lukin S, Obraczka K. A machine learning framework for tcp round-trip time estimation. EURASIP J Wirel Commun Netw. 2014; 2014(1):47.
Aroussi S, Bouabana-Tebibel T, Mellouk A. Empirical QoE/QoS correlation model based on multiple parameters for VoD flows. In: Global Communications Conference (GLOBECOM), 2012 IEEE. IEEE: 2012. p. 1963–8.
Arroyo-Valles R, Alaiz-Rodriguez R, Guerrero-Curieses A, Cid-Sueiro J. Q-probabilistic routing in wireless sensor networks. In: Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on. IEEE: 2007. p. 1–6.
Astrom K. Optimal control of markov processes with incomplete state information. J Mathl Anal Appl. 1965; 10(1):174–205.
Auld T, Moore AW, Gull SF. Bayesian neural networks for internet traffic classification. IEEE Trans neural networks. 2007; 18(1):223–39.
Axelsson S. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans Inf Syst Secur (TISSEC). 2000; 3(3):186–205.
Ayoubi S, Limam N, Salahuddin MA, Shahriar N, Boutaba R, Estrada-Solano F, Caicedo OM. Machine learning for cognitive network management. IEEE Commun Mag. 2018; 1(1):1.
Badarla V, Murthy CSR. Learning-tcp: A stochastic approach for efficient update in tcp congestion window in ad hoc wireless networks. J Parallel Distrib Comput. 2011; 71(6):863–78.
Badarla V, Siva Ram Murthy C. A novel learning based solution for efficient data transport in heterogeneous wireless networks. Wirel Netw. 2010; 16(6):1777–98.
Bakhshi T, Ghita B. On internet traffic classification: A two-phased machine learning approach. J Comput Netw Commun. 2016; 2016:2016.
Bakre A, Badrinath BR. I-tcp: Indirect tcp for mobile hosts. In: Proceedings of the 15th International Conference on Distributed Computing Systems. ICDCS ’95. Washington: IEEE Computer Society: 1995. p. 136.
Balakrishnan H, Seshan S, Amir E, Katz RH. Improving tcp/ip performance over wireless networks. In: Proceedings of the 1st Annual International Conference on Mobile Computing and Networking. MobiCom ’95. New York: ACM: 1995. p. 2–11.
Balakrishnan H, Padmanabhan VN, Seshan S, Katz RH. A comparison of mechanisms for improving tcp performance over wireless links. IEEE/ACM Trans Netw. 1997; 5(6):756–69.
Baldo N, Zorzi M. Learning and adaptation in cognitive radios using neural networks. In: Consumer Communications and Networking Conference, 2008. CCNC 2008. 5th IEEE. IEEE: 2008. p. 998–1003.
Baldo N, Dini P, Nin-Guerrero J. User-driven call admission control for voip over wlan with a neural network based cognitive engine. In: Cognitive Information Processing (CIP), 2010 2nd International Workshop on. IEEE: 2010. p. 52–6.
Baras JS, Ball M, Gupta S, Viswanathan P, Shah P. Automated network fault management. In: MILCOM 97 Proceedings. IEEE: 1997. p. 1244–50.
Barman D, Matta I. Model-based loss inference by tcp over heterogeneous networks. In: Proceedings of WiOpt 2004 Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Cambridge: 2004. p. 364–73.
Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD. Can machine learning be secure? In: Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, ACM, ASIACCS ’06. New York: ACM: 2006. p. 16–25.
Barreto GA, Mota JCM, Souza LGM, Frota RA, Aguayo L. Condition monitoring of 3g cellular networks through competitive neural models. IEEE Trans Neural Netw. 2005; 16(5):1064–75.
Baum LE, Petrie T. Statistical inference for probabilistic functions of finite state markov chains. Ann Math Statist. 1966; 37(6):1554–63.
Bay SD, Kibler D, Pazzani MJ, Smyth P. The uci kdd archive of large data sets for data mining research and experimentation. SIGKDD Explor Newsl. 2000; 2(2):81–5.
Bayes M, Price M. An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, f. r. s. communicated by mr. price, in a letter to john canton, a. m. f. r. s. Philos Trans. 1763; 53(1683-1775):370–418.
Beale J, Deraison R, Meer H, Temmingh R, Walt CVD. Nessus network auditing. Burlington: Syngress Publishing; 2004.
Beale J, Baker AR, Esler J. Snort: IDS and IPS toolkit. Burlington: Syngress Publishing; 2007.
Bellman R. Dynamic Programming, 1st ed. Princeton: Princeton University Press; 1957.
Belshe M, Peon R. SPDY Protocol. Tech. rep., Network Working Group. 2012. https://tools.ietf.org/pdf/draft-mbelshe-httpbis-spdy-00.pdf .
Belshe M, Peon R, Thomson M. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540, IETF. 2015. http://www.rfc-editor.org/info/rfc7540.txt .
Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Proceedings of the 19th, International Conference on Neural Information Processing Systems. NIPS’06. Cambridge: MIT Press: 2006. p. 153–60.
Benson T. Data Set for IMC 2010 Data Center Measurement. 2010. http://pages.cs.wisc.edu/tbenson/IMC10_Data.html . Accessed 28 Dec 2017.
Bergstra JA, Middelburg C. Itu-t recommendation g. 107: The e-model, a computational model for use in transmission planning: ITU; 2003.
Bermolen P, Rossi D. Support vector regression for link load prediction. Comput Netw. 2009; 53(2):191–201.
Bermolen P, Mellia M, Meo M, Rossi D, Valenti S. Abacus: Accurate behavioral classification of P2P-tv traffic. Comput Netw. 2011; 55(6):1394–411.
Bernaille L, Teixeira R. Implementation issues of early application identification. Lect Notes Compu Sci. 2007; 4866:156.
Bernaille L, Teixeira R, Akodkenou I, Soule A, Salamatian K. Traffic classification on the fly. ACM SIGCOMM Comput Commun Rev. 2006a; 36(2):23–6.
Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proceedings of the 2006 ACM CoNEXT Conference. ACM: 2006b. p. 61–6:12.
Bezdek JC, Ehrlich R, Full W. Fcm: The fuzzy c-means clustering algorithm. Comput Geosci. 1984; 10(2-3):191–203.
Bhorkar AA, Naghshvar M, Javidi T, Rao BD. Adaptive opportunistic routing for wireless ad hoc networks. IEEE/ACM Trans Netw. 2012; 20(1):243–56.
Biaz S, Vaidya NH. Distinguishing congestion losses from wireless transmission losses: a negative result. In: Proceedings 7th International Conference on Computer Communications and Networks (Cat. No.98EX226). Piscataway: IEEE: 1998. p. 722–31.
Bkassiny M, Li Y, Jayaweera SK. A survey on machine-learning techniques in cognitive radios. IEEE Commun Surv Tutor. 2013; 15(3):1136–59.
Blanton E, Allman M. On making tcp more robust to packet reordering. SIGCOMM Comput Commun Rev. 2002; 32(1):20–30.
Blenk A, Kalmbach P, van der Smagt P, Kellerer W. Boost online virtual network embedding: Using neural networks for admission control. In: Network and Service Management (CNSM), 2016 12th International Conference on. Piscataway: IEEE: 2016. p. 10–8.
Boero L, Marchese M, Zappatore S. Support vector machine meets software defined networking in ids domain. In: Proceedings of the 29th International Teletraffic Congress (ITC), vol. 3. New York: IEEE: 2017. p. 25–30.
Bojovic B, Baldo N, Nin-Guerrero J, Dini P. A supervised learning approach to cognitive access point selection. In: GLOBECOM Workshops (GC Wkshps), 2011 IEEE. Piscataway: IEEE: 2011. p. 1100–5.
Bojovic B, Baldo N, Dini P. A cognitive scheme for radio admission control in lte systems. In: Cognitive Information Processing (CIP), 2012 3rd International Workshop on. Piscataway: IEEE: 2012. p. 1–3.
Bojovic B, Quer G, Baldo N, Rao RR. Bayesian and neural network schemes for call admission control in lte systems. In: Global Communications Conference (GLOBECOM), 2013 IEEE. Piscataway: IEEE: 2013. p. 1246–52.
Bonald T, May M, Bolot JC. Analytic evaluation of red performance. In: Proceedings IEEE INFOCOM 2000. Conference on, Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), vol 3.2000. p. 1415–24.
Bonfiglio D, Mellia M, Meo M, Rossi D, Tofanelli P. Revealing skype traffic: when randomness plays with you. In: ACM SIGCOMM Computer Communication Review. ACM: 2007. p. 37–48.
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, New York, NY, USA, COLT ’92. New York: ACM: 1992. p. 144–52.
Boyan JA, Littman ML. Packet routing in dynamically changing networks: A reinforcement learning approach. In: Advances in neural information processing systems: 1994. p. 671–8.
Braden B, Clark D, Crowcroft J, Davie B, Deering S, Estrin D, Floyd S, Jacobson V, Minshall G, Partridge C, Peterson L, Ramakrishnan K, Shenker S, Wroclawski J, Zhang L. Recommendations on queue management and congestion avoidance in the internet. RFC 2309, Internet Engineering Task Force. 1998. https://tools.ietf.org/html/rfc2309 .
Brakmo LS, O’Malley SW, Peterson LL. Tcp vegas: New techniques for congestion detection and avoidance. In: Proceedings of the Conference on Communications Architectures, Protocols and Applications, ACM, New York, NY, USA, SIGCOMM ’94. New York: ACM: 1994. p. 24–35.
Brauckhoff D, Wagner A, May M. FLAME: A flow-level anomaly modeling engine. In: Proceedings of the conference on Cyber security experimentation and test (CSET). Berkley: USENIX Association: 2008. p. 1.
Breiman L. Bagging predictors. Mach Learn. 1996; 24(2):123–40.
Breiman L, Friedman J, Stone C, Olshen R. Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. New York: Taylor & Francis; 1984.
Brill E, Lin JJ, Banko M, Dumais ST, Ng AY, et al. Data-intensive question answering. In: TREC, vol. 56.2001. p. 90.
Broomhead DS, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive networks. Memorandum No. 4148. Malvern: Royal Signals and Radar Establishment; 1988.
Brownlee J. Practical Machine Learning Problems. 2013. https://machinelearningmastery.com/practical-machine-learning-problems/ . Accessed 28 Dec 2017.
Bryson A, Ho Y. Applied optimal control: optimization, estimation and control. Blaisdell book in the pure and applied sciences. Waltham: Blaisdell Pub. Co; 1969.
Bryson AE. A gradient method for optimizing multi-stage allocation processes. In: Harvard University Symposium on Digital Computers and their Applications. Boston: 1961. p. 72.
Buczak AL, Guven E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor. 2016; 18(2):1153–76.
Caini C, Firrincieli R. Tcp hybla: a tcp enhancement for heterogeneous networks. Int J Satell Commun Netw. 2004; 22(5):547–66.
Cannady J. Artificial neural networks for misuse detection. In: Proceedings of the 21st National information systems security conference, vol. 26. Virginia: 1998. p. 368–81.
Cannady J. Next generation intrusion detection: Autonomous reinforcement learning of network attacks. In: Proceedings of the 23rd national information systems security conference. Baltimore: 2000. p. 1–12.
Chabaa S, Zeroual A, Antari J. Identification and prediction of internet traffic using artificial neural networks. J Int Learn Syst Appl. 2010; 2(03):147.
Chakrabarti S, Chakraborty M, Mukhopadhyay I. Study of snort-based ids. In: Proceedings of the International Conference and Workshop on Emerging Trends in Technology. New York: ACM: 2010. p. 43–7.
Chang CC, Lin CJ. Libsvm: a library for support vector machines. ACM trans int syst technols (TIST). 2011; 2(3):27.
Charonyktakis P, Plakia M, Tsamardinos I, Papadopouli M. On user-centric modular qoe prediction for voip based on machine-learning algorithms. IEEE Trans Mob Comput. 2016; 15(6):1443–56.
Chebrolu S, Abraham A, Thomas JP. Feature deduction and ensemble design of intrusion detection systems. Comput secur. 2005; 24(4):295–307.
Chen M, Zheng AX, Lloyd J, Jordan MI, Brewer E. Failure diagnosis using decision trees. In: Autonomic Computing, 2004. Proceedings. International Conference on. Piscataway: IEEE: 2004. p. 36–43.
Chen MY, Kiciman E, Fratkin E, Fox A, Brewer E. Pinpoint: Problem determination in large, dynamic internet services. In: Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on. Piscataway: IEEE: 2002. p. 595–604.
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM: 2016. p. 785–94.
Chen Z, Wen J, Geng Y. Predicting future traffic using hidden markov models. In: Proceddings of 24th IEEE International Conference on Network Protocols (ICNP). IEEE: 2016. p. 1–6.
Cheng RG, Chang CJ. Neural-network connection-admission control for atm networks. IEE Proc-Commun. 1997; 144(2):93–8.
Choi SP, Yeung DY. Predictive q-routing: A memory-based reinforcement learning approach to adaptive traffic control. In: Advances in Neural Information Processing Systems.1996. p. 945–51.
Chow CK. An optimum character recognition system using decision functions. IRE Trans Electron Comput EC. 1957; 6(4):247–54.
Chun-Feng W, Kui L, Pei-Ping S. Hybrid artificial bee colony algorithm and particle swarm search for global optimization. Math Probl Eng. 2014;2014.
Cisco. The Zettabyte Era: Trends and Analysis. 2017. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html . Accessed 28 Dec 2017.
Cisco Systems. Cisco IOS Netflow. 2012. http://www.cisco.com/go/netflow . Accessed 01 Aug 2017.
Cisco Systems. Snort: The worlds most widely deployed ips technology. 2014. https://www.cisco.com/c/en/us/products/collateral/security/brief_c17-733286.html . Accessed 25 Apr 2018.
Claeys M, Latre S, Famaey J, De Turck F. Design and evaluation of a self-learning http adaptive video streaming client. IEEE commun lett. 2014a; 18(4):716–9.
Claeys M, Latré S, Famaey J, Wu T, Van Leekwijck W, De Turck F. Design and optimisation of a (fa) q-learning-based http adaptive streaming client. Connect Sci. 2014b; 26(1):25–43.
Cortez P, Rio M, Rocha M, Sousa P. Internet traffic forecasting using neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN). IEEE: 2006. p. 2635–42.
Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B (Methodological). 1958; 20(2):215–42.
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control. Signals Syst (MCSS). 1989; 2(4):303–14.
Dagum P, Galper A, Horvitz EJ. Temporal Probabilistic Reasoning: Dynamic Network Models for Forecasting. Stanford: Knowledge Systems Laboratory, Medical Computer Science, Stanford University; 1991.
Dainotti A, Pescapé A, Sansone C. Early classification of network traffic through multi-classification. In: International Workshop on Traffic Monitoring and Analysis. Springer: 2011. p. 122–35.
Dainotti A, Pescape A, Claffy KC. Issues and future directions in traffic classification. IEEE Netw. 2012; 26(1):35–40.
Dean T, Kanazawa K. A model for reasoning about persistence and causation. Comput Intell. 1989; 5(2):142–50.
Dechter R. Learning while searching in constraint-satisfaction-problems. In: Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, AAAI Press, AAAI’86.Palo Alto: AAAI Press: 1986. p. 178–83.
Demirbilek E. The INRS Audiovisual Quality Dataset. 2016. https://github.com/edipdemirbilek/TheINRSAudiovisualQualityDataset . Accessed 28 Dec 2017.
Demirbilek E, Grégoire JC. Machine learning–based parametric audiovisual quality prediction models for real-time communications. ACM Transactions on Multimedia Computing. Commun Appl (TOMM). 2017; 13(2):16.
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (Method). 1977; 39(1):1–38.
Depren O, Topallar M, Anarim E, Ciliz MK. An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks. Expert syst Appl. 2005; 29(4):713–22.
Detristan T, Ulenspiegel T, Malcom Y, Underduk M. Polymorphic shellcode engine using spectrum analysis. 2003. http://www.phrack.org/show.php?p=61&a=9 . Accessed 25 May 2018.
Ding J, Kramer B, Xu S, Chen H, Bai Y. Predictive fault management in the dynamic environment of ip networks. In: IP Operations and Management, 2004. Proceedings IEEE Workshop on. Piscataway: IEEE: 2004. p. 233–9.
Ding L, Wang X, Xu Y, Zhang W. Improve throughput of tcp-vegas in multihop ad hoc networks. Comput Commun. 2008; 31(10):2581–8.
Domingos P. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World.Basic Books; 2015.
Donato W, Pescapé A, Dainotti A. Traffic identification engine: an open platform for traffic classification. IEEE Netw. 2014; 28(2):56–64.
Dong M, Li Q, Zarchy D, Godfrey PB, Schapira M. Pcc: Re-architecting congestion control for consistent high performance. In: Proceedings of the 12th, USENIX Conference on Networked Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, NSDI’15. Berkley: USENIX Association: 2015. p. 395–408.
Dowling J, Cunningham R, Curran E, Cahill V. Collaborative reinforcement learning of autonomic behaviour. In: Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004.2004. p. 700–4. https://doi.org/10.1109/DEXA.2004.1333556 .
Dowling J, Curran E, Cunningham R, Cahill V. Using feedback in collaborative reinforcement learning to adaptively optimize manet routing. IEEE Transactions on Systems. Man and Cybern-Part A: Syst Hum. 2005; 35(3):360–72.
Dreger H, Feldmann A, Mai M, Paxson V, Sommer R. Dynamic application-layer protocol analysis for network intrusion detection. In: USENIX Security Symposium. Berkeley: USENIX Security Symposium: 2006. p. 257–72.
Dump CM. Dde command execution malware samples. 2017. http://contagiodump.blogspot.it . Accessed 1 Mar 2017.
eBay Inc. eBay. 2017. https://www.ebay.com/ . Accessed 01 Aug 2017.
Edalat Y, Ahn JS, Obraczka K. Smart experts for network state estimation. IEEE Trans Netw Serv Manag. 2016; 13(3):622–35.
El Khayat I, Geurts P, Leduc G. Improving TCP in Wireless Networks with an Adaptive Machine-Learnt Classifier of Packet Loss Causes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005, pp. 549–60.
El Khayat I, Geurts P, Leduc G. Enhancement of tcp over wired/wireless networks with packet loss classifiers inferred by supervised learning. Wirel Netw. 2010; 16(2):273–90.
Elkotob M, Grandlund D, Andersson K, Ahlund C. Multimedia qoe optimized management using prediction and statistical learning. In: Local Computer Networks (LCN),2010 IEEE 35th Conference on. IEEE: 2010. p. 324–7.
Elwhishi A, Ho PH, Naik K, Shihada B. Arbr: Adaptive reinforcement-based routing for dtn. In: Wireless and Mobile Computing, Networking and Communications (WiMob), 2010 IEEE 6th International Conference on. IEEE: 2010. p. 376–85.
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. RadioGraphics. 2017; 37(2):505–15.
Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proceedings of the 2006 SIGCOMM workshop on Mining network data. ACM: 2006a. p. 281–6.
Erman J, Mahanti A, Arlitt M. Internet traffic identification using machine learning. In: Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE. IEEE: 2006b. p. 1–6.
Erman J, Mahanti A, Arlitt M, Cohen I, Williamson C. Offline/realtime traffic classification using semi-supervised learning. Perform Eval. 2007a; 64(9):1194–213.
Erman J, Mahanti A, Arlitt M, Williamson C. Identifying and discriminating between web and peer-to-peer traffic in the network core. In: Proceedings of the 16th international conference on World Wide Web. ACM: 2007b. p. 883–92.
Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. Appl data min comput secur. 2002; 6:77–102.
Este A, Gringoli F, Salgarelli L. Support vector machines for tcp traffic classification. Comput Netw. 2009; 53(14):2476–90.
Eswaradass A, Sun XH, Wu M. Network bandwidth predictor (nbp): A system for online network performance forecasting. In: Proceedings of 6th IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE: 2006. p. 4–pp.
Fadlullah Z, Tang F, Mao B, Kato N, Akashi O, Inoue T, Mizutani K. State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun Surv Tutor. 2017; PP(99):1.
Farmer D, Venema W. Satan: Security administrator tool for analyzing networks. 1993. http://www.porcupine.org/satan/ . Accessed 28 Dec 2017.
Feng W-C, Shin KG, Kandlur DD, Saha D. The blue active queue management algorithms. IEEE/ACM Trans Netw. 2002; 10(4):513–28.
Fiedler M, Hossfeld T, Tran-Gia P. A generic quantitative relationship between quality of experience and quality of service. IEEE Netw. 2010;24(2).
Finamore A, Mellia M, Meo M, Rossi D. Kiss: Stochastic packet inspection classifier for udp traffic. IEEE/ACM Trans Netw. 2010; 18(5):1505–15.
Fix E, Hodges JL. Discriminatory analysis-nonparametric discrimination: consistency properties. Report No. 4, Project 21-49-004, USAF School of Aviation Medicine. 1951.
Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans Netw. 1993; 1(4):397–413.
Fogla P, Sharif MI, Perdisci R, Kolesnikov OM, Lee W. Polymorphic blending attacks. In: USENIX Security Symposium. Berkley: USENIX Association: 2006. p. 241–56.
Fonseca N, Crovella M. Bayesian packet loss detection for tcp. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol 3.2005. p. 1826–37.
Forster A, Murphy AL. Froms: Feedback routing for optimizing multiple sinks in wsn with reinforcement learning. In: Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International, Conference on. IEEE: 2007. p. 371–6.
Fraleigh C, Diot C, Lyles B, Moon S, Owezarski P, Papagiannaki D, Tobagi F. Design and deployment of a passive monitoring infrastructure. In: Thyrrhenian Internatinal Workshop on Digital Communications. Springer: 2001. p. 556–75.
Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, ICML’96. San Francisco: Morgan Kaufmann Publishers Inc.: 1996. p. 148–56.
Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Statist. 2001; 29(5):1189–232.
Fu CP, Liew SC. Tcp veno: Tcp enhancement for transmission over wireless access networks. IEEE J Sel Areas Commun. 2003; 21(2):216–28.
Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980; 36(4):193–202.
Funahashi KI. On the approximate realization of continuous mappings by neural networks. Neural netw. 1989; 2(3):183–92.
Gao Y, He G, Hou JC. On exploiting traffic predictability in active queue management. In: Proceedings. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3. Piscataway: IEEE: 2002. p. 1630–9.
Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E. Anomaly-based network intrusion detection: Techniques, systems and challenges. Comput Secur. 2009; 28(1-2):18–28.
Gartner Inc. Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent From 2016. 2017. https://www.gartner.com/newsroom/id/3598917 . Accessed 01 Aug 2017.
Geurts P, Khayat IE, Leduc G. A machine learning approach to improve congestion control over wireless computer networks. In: Data Mining, 2004. ICDM ’04. Fourth IEEE International Conference on: 2004. p. 383–6.
Giacinto G, Perdisci R, Del Rio M, Roli F. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inf Fusion. 2008; 9(1):69–82.
Go Y, Jamshed MA, Moon Y, Hwang C, Park K. Apunet: Revitalizing gpu as packet processing accelerator. In: NSDI.2017. p. 83–96.
Goetz P, Kumar S, Miikkulainen R. On-line adaptation of a signal predistorter through dual reinforcement learning. In: ICML.1996. p. 175–81.
Goodfellow I, Bengio Y, Courville A. Deep Learning.MIT Press; 2016. http://www.deeplearningbook.org .
Google. Cloud TPUs - ML accelerators for TensorFlow, Google Cloud Platform. 2017. https://cloud.google.com/tpu/ . Accessed 01 Aug 2017.
Görnitz N, Kloft M, Rieck K, Brefeld U. Active learning for network intrusion detection. In: Proceedings of the 2nd ACM workshop on Security and artificial intelligence. New York: ACM: 2009. p. 47–54.
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;1157–82.
Ha S, Rhee I, Xu L. Cubic: A new tcp-friendly high-speed tcp variant. SIGOPS Oper Syst Rev. 2008; 42(5):64–74.
Habib I, Tarraf A, Saadawi T. A neural network controller for congestion control in atm multiplexers. Comput Netw ISDN Syst. 1997; 29(3):325–34.
Haffner P, Sen S, Spatscheck O, Wang D. Acas: automated construction of application signatures. In: Proceedings of the 2005 ACM SIGCOMM workshop on Mining network data. New York: ACM: 2005. p. 197–202.
Haining W. An economical broadband network with high added value. In: Evolving the Access Network, International Engineering Consortium. Chicago: International Engineering Consortium: 2006. p. 67–70.
Hajji H. Statistical analysis of network traffic for adaptive faults detection. IEEE Trans Neural Netw. 2005; 16(5):1053–63.
Hariri B, Sadati N. Nn-red: an aqm mechanism based on neural networks. Electron Lett. 2007; 43(19):1053–5.
Harrison V, Pagliery J. Nearly 1 million new malware threats released every day. 2015. http://money.cnn.com/2015/04/14/technology/security/cyber-attack-hacks-security/index.html . Accessed 28 Dec 2017.
Hashmi US, Darbandi A, Imran A. Enabling proactive self-healing by data mining network failure logs. In: Computing, Networking and Communications (ICNC), 2017 International Conference on. Piscataway: IEEE: 2017. p. 511–7.
He L, Xu C, Luo Y. vtc: Machine learning based traffic classification as a virtual network function. In: Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. ACM: 2016. p. 53–56.
He Q, Shayman MA. Using reinforcement learning for proactive network fault management. In: Proceedings of the International Conference on Communication Technologies.1999.
Hebb D. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley; 1949.
Henderson T, Floyd S, Gurtov S, Nishida Y. sThe newreno modification to tcp’s fast recovery algorithm. RFC 6582, Internet Engineering Task Force. 2012. https://tools.ietf.org/html/rfc6582 .
Hinton GE, McClelland JL, Rumelhart DE. Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1 In: Rumelhart DE, McClelland JL, PDP Research Group C, editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, MA, USA, chap Distributed Representations: MIT Press: 1986. p. 77–109.
Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7):1527–54.
Hiramatsu A. Atm communications network control by neural networks. IEEE Trans Neural Netw. 1990; 1(1):122–30.
Hiramatsu A. Integration of atm call admission control and link capacity control by distributed neural networks. IEEE J Sel Areas Commun. 1991; 9(7):1131–8.
Ho TK. Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1, IEEE Computer Society, Washington, DC, USA, ICDAR ’95. Piscataway: IEEE: 1995. p. 278.
de Hoon M, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004; 20(9):1453–4.
Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982; 79(8):2554–8. http://www.pnas.org/content/79/8/2554.full.pdf .
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991; 4(2):251–7.
Hu T, Fei Y. Qelar: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans Mob Comput. 2010; 9(6):796–809.
Hu W, Hu W, Maybank S. Adaboost-based algorithm for network intrusion detection. IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics). 2008; 38(2):577–83.
Huang YS, Suen CY. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Trans Pattern Anal Mach Intell. 1995; 17(1):90–4.
Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959; 148(3):574–91.
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962; 160(1):106–54.
IMPACT Cyber Trust. Information Marketplace for Policy and Analysis of Cyber-risk and Trust. 2017. https://www.impactcybertrust.org . Accessed 01 Aug 2017.
Information Sciences Institute. The network simulator ns-2. 2014. http://www.isi.edu/nsnam/ns/ . Accessed 10 Oct 2017.
Ingham KL, Inoue H. Comparing anomaly detection techniques for http. In: International Workshop on Recent Advances in Intrusion Detection (RAID). Berlin: Springer: 2007. p. 42–62.
Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F. Directed diffusion for wireless sensor networking. IEEE/ACM Trans Netw (ToN). 2003; 11(1):2–16.
International Telecommunications Union. G.107 : The E-model: a computational model for use in transmission planning. 2008. https://www.itu.int/rec/T-REC-G.107 . Accessed 28 Dec 2017.
Internet Assigned Numbers Authority. IANA. 2017. https://www.iana.org/ . Accessed 01 Aug 2017.
Internet Engineering TaskForce. n Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks. 2002. https://tools.ietf.org/html/rfc3411 . Accessed 01 Aug 2017.
Internet Engineering Task Force. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information. 2008. https://tools.ietf.org/html/rfc5101 . Accessed 01 Aug 2017.
Ivakhnenko A, Lapa V, ENGINEERING PULISOE. Cybernetic Predicting Devices. Purdue University School of Electrical Engineering; 1965.
Iyengar J, Swett I. QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2. Tech. rep. Network Working Group; 2015. https://tools.ietf.org/pdf/draft-tsvwg-quic-protocol-00.pdf .
Jain A, Karandikar A, Verma R. An adaptive prediction based approach for congestion estimation in active queue management (apace). In: Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE, vol. 7. Piscataway: IEEE: 2003. p. 4153–7.
Javaid A, Niyaz Q, Sun W, Alam M. A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), ICST, (Institute for Computer Sciences Social-Informatics and Telecommunications Engineering). Brussels: 2016. p. 21–6.
Jayaraj A, Venkatesh T, Murthy CSR. Loss classification in optical burst switching networks using machine learning techniques: improving the performance of tcp. IEEE J Sel Areas Commun. 2008; 26(6):45–54.
Jennings A. A learning system for communications network configuration. Eng Appl Artif Intell. 1988; 1(3):151–60.
Jiang H, Moore AW, Ge Z, Jin S, Wang J. Lightweight application classification for network management. In: Proceedings of the 2007 SIGCOMM workshop on Internet network management. ACM: 2007. p. 299–304.
Jiang H, Luo Y, Zhang Q, Yin M, Wu C. Tcp-gvegas with prediction and adaptation in multi-hop ad hoc networks. Wirel Netw. 2017; 23(5):1535–48.
Jiang S, Song X, Wang H, Han JJ, Li QH. A clustering-based method for unsupervised intrusion detections. Pattern Recog Lett. 2006; 27(7):802–10.
Jin Y, Duffield N, Haffner P, Sen S, Zhang ZL. Inferring applications at the network layer using collective traffic statistics. In: Teletraffic Congress (ITC), 2010 22nd International. IEEE: 2010. p. 1–8.
Jin Y, Duffield N, Erman J, Haffner P, Sen S, Zhang ZL. A modular machine learning system for flow-level traffic classification in large networks. ACM Trans Knowl Discov Data (TKDD). 2012; 6(1):4.
Jing N, Yang M, Cheng S, Dong Q, Xiong H. An efficient svm-based method for multi-class network traffic classification. In: Performance Computing and Communications Conference (IPCCC), 2011 IEEE 30th International. IEEE: 2011. p. 1–8.
Joachims T. SVMlight. 1999. http://svmlight.joachims.org/ . Accessed 28 Dec 2017.
Johnsson A, Meirosu C. Towards automatic network fault localization in real time using probabilistic inference. In: Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on. Piscataway: IEEE: 2013. p. 1393–8.
Jordan MI. Serial order: A parallel distributed processing approach. Tech. Rep. ICS Report 8604. San Diego: University of California; 1986.
Juniper Research. Cybercrime will cost businesses over $2 trillion by 2019. 2015. https://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion . Accessed 10 Nov 2017.
Karagiannis T, Broido A, Brownlee N, Claffy KC, Faloutsos M. Is p2p dying or just hiding?[p2p traffic measurement]. In: IEEE Global Telecommunications Conference (GLOBECOM), vol. 3.2004. p. 1532–8.
Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: multilevel traffic classification in the dark. ACM SIGCOMM Comput Commun Rev. 2005; 35(4):229–40.
Karami A. Accpndn: Adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network. J Netw Comput Appl. 2015; 56(Supplement C):1–18.
Lab Kaspersky. Damage control: The cost of security breaches. IT security risks special report series Report, Kaspersky. 2015. https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf . Accessed 10 Nov 2017.
Kayacik HG, Zincir-Heywood AN, Heywood MI. On the capability of an SOM-based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks. New York: IEEE: 2003. p. 1808–13.
Kennedy J, Eberhart R. Particle swarm optimization. In: Neural Networks, 1995. Proceedings., IEEE International Conference on, vol 4.1995. p. 1942–8.
Khan A, Sun L, Ifeachor E. Content-based video quality prediction for mpeg4 video streaming over wireless networks. J Multimedia. 2009a;4(4).
Khan A, Sun L, Ifeachor E. Content clustering based video quality prediction model for mpeg4 video streaming over wireless networks.IEEE; 2009b, pp. 1–5.
Khanafer RM, Solana B, Triola J, Barco R, Moltsen L, Altman Z, Lazaro P. Automated diagnosis for umts networks using bayesian network approach. IEEE Trans veh technol. 2008; 57(4):2451–61.
Khayat IE, Geurts P, Leduc G. Machine-learnt versus analytical models of tcp throughput. Comput Netw. 2007; 51(10):2631–44.
Khorsandroo S, Noor RM, Khorsandroo S. The role of psychophysics laws in quality of experience assessment: a video streaming case study. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics. ACM: 2012. p. 446–52.
Khorsandroo S, Md Noor R, Khorsandroo S. A generic quantitative relationship to assess interdependency of qoe and qos. KSII Trans Internet Inf Syst. 2013;7(2).
Kiciman E, Fox A. Detecting application-level failures in component-based internet services. IEEE Trans Neural Netw. 2005; 16(5):1027–41.
Kim DS, Nguyen HN, Park JS. Genetic algorithm to improve svm based network intrusion detection system. New York: IEEE; 2005, pp. 155–8.
Kim H, Fomenkov M, claffy kc, Brownlee N, Barman D, Faloutsos M. Comparison of internet traffic classification tools. In: IMRG Workshop on Application Classification and Identification: 2007. p. 1–2.
Kim H, Claffy KC, Fomenkov M, Barman D, Faloutsos M, Lee K. Internet traffic classification demystified: myths, caveats, and the best practices.ACM; 2008, p. 11.
Kim J, Kim J, Thu HLT, Kim H. Long short term memory recurrent neural network classifier for intrusion detection. International Conference on.IEEE; 2016, pp. 1–5.
Klaine PV, Imran MA, Onireti O, Souza RD. A survey of machine learning techniques applied to self organizing cellular networks. IEEE Commun Surv Tutor. 2017; PP(99):1.
Kogeda OP, Agbinya JI, Omlin CW. A probabilistic approach to faults prediction in cellular networks.IEEE; 2006, p. 130.
Kogeda P, Agbinya J. Prediction of faults in cellular networks using bayesian network model.UTS ePress; 2006.
Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982; 43(1):59–69.
Kohonen T, Hynninen J, Kangas J, Laaksonen J. Som pak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.1996.
Kotz D, Henderson T, Abyzov I, Yeo J. CRAWDAD dataset dartmouth/campus (v. 2009-09-09). 2009. https://crawdad.org/dartmouth/campus/20090909 . Accessed 28 Dec 2017.
Kruegel C, Toth T. Using decision trees to improve signature-based intrusion detection. In: Recent Advances in Intrusion Detection. Springer: 2003. p. 173–91.
Kumano Y, Ata S, Nakamura N, Nakahira Y, Oka I. Towards real-time processing for application identification of encrypted traffic. In: International Conference on Computing, Networking and Communications (ICNC): 2014. p. 136–40.
Kumar S, Miikkulainen R. Dual reinforcement q-routing: An on-line adaptive routing algorithm. In: Proceedings of the artificial neural networks in engineering Conference.1997. p. 231–8.
Kumar Y, Farooq H, Imran A. Fault prediction and reliability analysis in a real cellular network. In: Wireless Communications and Mobile Computing Conference (IWCMC), 2017 13th International. IEEE: 2017. p. 1090–1095.
Labs ML. Kdd cup 1998 data. 1998. https://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html . Accessed 28 Dec 2017.
Labs ML. Kdd cup 1999 data. 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . Accessed 28 Dec 2017.
Lagoudakis MG, Parr R. Model-free least-squares policy iteration. In: Advances in neural information processing systems.2002. p. 1547–54.
Lal TN, Chapelle O, Weston J, Elisseeff A. Embedded methods. In: Feature extraction. Springer: 2006. p. 137–65.
Lapedes AS, Farber RM. How neural nets work.1987.
Laplace PS. Théorie analytique des probabilités. Paris: Courcier; 1812.
Lawrence Berkeley NationalLaboratoryandICSI. LBNL/ICSI Enterprise Tracing Project. 2005. http://www.icir.org/enterprise-tracing/ . Accessed 01 Aug 2017.
Le Cun Y. Learning Process in an Asymmetric Threshold Network. Berlin, Heidelberg: Springer Berlin Heidelberg; 1986, pp. 233–40.
Lee SJ, Hou CL. A neural-fuzzy system for congestion control in atm networks. IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics). 2000; 30(1):2–9.
Leela-Amornsin L, Esaki H. Heuristic congestion control for message deletion in delay tolerant network. In: Proceedings of the Third Conference on Smart Spaces and Next Generation Wired, and 10th International Conference on Wireless Networking, Springer-Verlag, Berlin, Heidelberg, ruSMART/NEW2AN’10: 2010. p. 287–98.
Legendre A. Nouvelles méthodes pour la détermination des orbites des comètes. Nineteenth Century Collections Online (NCCO): Science, Technology, and Medicine: 1780-1925, F. Didot. 1805.
Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res. 2017; 18(17):1–5.
Leonardi E, Mellia M, Horvath A, Muscariello L, Niccolini S, Rossi D, Young K. Building a cooperative p2p-tv application over a wise network: the approach of the european fp-7 strep napa-wine. IEEE Commun Mag. 2008; 46(4):20–2.
Li F, Sun J, Zukerman M, Liu Z, Xu Q, Chan S, Chen G, Ko KT. A comparative simulation study of tcp/aqm systems for evaluating the potential of neuron-based aqm schemes. J Netw Comput Appl. 2014; 41(Supplement C):274–99.
Li W, Moore AW. A machine learning approach for efficient traffic classification. In: Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2007. MASCOTS’07. 15th International, Symposium on. IEEE: 2007. p. 310–7.
Li W, Zhou F, Meleis W, Chowdhury K. Learning-based and data-driven tcp design for memory-constrained iot. In: 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS).2016a. p. 199–205.
Li Y, Guo L. An active learning based tcm-knn algorithm for supervised network intrusion detection. Comput Secur. 2007; 26(7):459–67.
Li Y, Ma R, Jiao R. A hybrid malicious code detection method based on deep learning. Methods. 2015;9(5).
Li Y, Liu H, Yang W, Hu D, Xu W. Inter-data-center network traffic prediction with elephant flows: IEEE; 2016b, pp. 206–13.
Lin LJ. Reinforcement learning for robots using neural networks. PhD thesis. Pittsburgh, PA, USA: Carnegie Mellon University; 1992. uMI Order No. GAX93-22750.
Lin SC, Akyildiz IF, Wang P, Luo M. Qos-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. In: Services Computing (SCC) 2016, IEEE International Conference on. IEEE: 2016. p. 25–33.
Lin Z, van der Schaar M. Autonomic and distributed joint routing and power control for delay-sensitive applications in multi-hop wireless networks. IEEE Trans Wirel Commun. 2011; 10(1):102–13.
Lincoln Laboratory MIT. DARPA Intrusion Detection Evaluation. 1999. https://www.ll.mit.edu/ideval/data/1999data.html . Accessed 01 Aug 2017.
Littlestone N, Warmuth MK. The weighted majority algorithm. In: 30th Annual Symposium on Foundations of Computer Science.1989. p. 256–61.
Littman M, Boyan J. A distributed reinforcement learning scheme for network routing. In: Proceedings of the international workshop on applications of neural networks to telecommunications. Psychology Press: 1993. p. 45–51.
Liu D, Zhang Y, Zhang H. A self-learning call admission control scheme for cdma cellular networks. IEEE trans neural netw. 2005; 16(5):1219–28.
Liu J, Matta I, Crovella M. End-to-end inference of loss nature in a hybrid wired/wireless environment.2003.
Liu YC, Douligeris C. Static vs. adaptive feedback congestion controller for atm networks. In: Global Telecommunications Conference, 1995. GLOBECOM ’95., vol 1. IEEE: 1995. p. 291–5.
Lu X, Wang H, Zhou R, Ge B. Using hessian locally linear embedding for autonomic failure prediction. In: Nature & Biologically Inspired, Computing, 2009. NaBIC 2009. World Congress on. IEEE: 2009. p. 772–6.
Ma J, Levchenko K, Kreibich C, Savage S, Voelker GM. Unexpected means of protocol inference. In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.2006. p. 313–26.
Machado VA, Silva CN, Oliveira RS, Melo AM, Silva M, Francês CR, Costa JC, Vijaykumar NL, Hirata CM. A new proposal to provide estimation of qos and qoe over wimax networks: An approach based on computational intelligence and discrete-event simulation.IEEE; 2011, pp. 1–6.
Machine Learning Group, University of Waikato. WEKA. 2017. http://www.cs.waikato.ac.nz/ml/weka/ . Accessed 01 Aug 2017.
Macleish KJ. Mapping the integration of artificial intelligence into telecommunications. IEEE J Sel Areas Commun. 1988; 6(5):892–8.
MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, University of California Press, Berkeley, 1: 1967. p. 281–97.
Malware-Traffic-Analysisnet. A source for pcap files and malware samples. 2017. http://www.malware-traffic-analysis.net . Accessed 15 Dec 2017.
Manzoor J, Drago I, Sadre R. The curious case of parallel connections in http/2. In: 12th International Conference on Network and Service Management (CNSM).2016. p. 174–80.
Mao H, Alizadeh M, Menache I, Kandula S. Resource management with deep reinforcement learning. In: HotNets.2016. p. 50–6.
Marbach P, Mihatsch O, Tsitsiklis JN. Call admission control and routing in integrated services networks using neuro-dynamic programming. IEEE J Sel areas commun. 2000; 18(2):197–208.
Markov AA. An example of statistical investigation in the text of eugene onegin illustrating coupling of tests in chains. In: Proceedings of the Royal Academy of Sciences of St. Petersburg, St. Petersburg, Rusia, vol 1.1913. p. 153.
Masoumzadeh SS, Taghizadeh G, Meshgi K, Shiry S. Deep blue: A fuzzy q-learning enhanced active queue management scheme. In: 2009 International Conference on Adaptive and Intelligent Systems: 2009. p. 43–8.
Mathis M, Mahdavi J, Floyd S, Romanow A. Tcp selective acknowledgment options. RFC 2018, Internet Engineering Task Force.1996. https://tools.ietf.org/html/rfc2018 .
Mathis M, Semke J, Mahdavi J, Ott T. The macroscopic behavior of the tcp congestion avoidance algorithm. SIGCOMM Comput Commun Rev. 1997; 27(3):67–82.
Maxion RA. Anomaly detection for diagnosis. In: Fault-Tolerant Computing, 1990. FTCS-20. Digest of, Papers., 20th International Symposium. IEEE: 1990. p. 20–7.
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943; 5(4):115–33.
McGregor A, Hall M, Lorier P, Brunskill J. Flow clustering using machine learning techniques. Passive and Active Netw Meas. 2004;205–14.
McKenney PE. Stochastic fairness queueing. In: INFOCOM ’90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies. The Multiple Facets of Integration. Proceedings. IEEE: 1990. p. 733–40. vol.2.
Messenger R, Mandell L. A modal search technique for predictibe nominal scale multivariate analys. J Am Stat Assoc. 1972; 67(340):768–72.
Mestres A, Rodriguez-Natal A, Carner J, Barlet-Ros P, Alarcón E, Solé M, Muntés-Mulero V, Meyer D, Barkai S, Hibbett MJ, et al. Knowledge-defined networking. ACM SIGCOMM Comput Commun Rev. 2017; 47(3):2–10.
Metasploit L. The metasploit framework. 2007. http://www.metasploit.com . Accessed 28 Dec 2017.
Meyer D. Machine Intelligence and Networks. 2016. https://www.youtube.com/watch?v=XORRw6Sqi9Y . Accessed 28 Dec 2017.
Mezzavilla M, Quer G, Zorzi M. On the effects of cognitive mobility prediction in wireless multi-hop ad hoc networks. In: 2014 IEEE International Conference on Communications (ICC): 2014. p. 1638–44.
Microsoft Corporation. Skype. 2017. https://www.skype.com/ . Accessed 01 Aug 2017.
Mignanti S, Di Giorgio A, Suraci V. A model based rl admission control algorithm for next generation networks. In: Networks, 2009. ICN’09. Eighth International Conference on. IEEE: 2009. p. 191–6.
Mijumbi R, Gorricho JL, Serrat J, Claeys M, De Turck F, Latré S. Design and evaluation of learning algorithms for dynamic resource management in virtual networks.IEEE; 2014, pp. 1–9.
Mijumbi R, Hasija S, Davy S, Davy A, Jennings B, Boutaba R. A connectionist approach to dynamic resource management for virtualised network functions. In: Network and Service Management (CNSM) 2016 12th International Conference on. IEEE: 2016. p. 1–9.
Miller ST, Busby-Earle C. Multi-perspective machine learning a classifier ensemble method for intrusion detection. In: Proceedings of the 2017 International Conference on Machine Learning and Soft Computing. ACM: 2017. p. 7–12.
Minsky M, Papert S. Perceptrons: An Introduction to Computational Geometry. Cambridge: MIT Press; 1972.
Mirza M, Sommers J, Barford P, Zhu X. A machine learning approach to tcp throughput prediction. IEEE/ACM Trans Netw. 2010; 18(4):1026–39.
Mitchell TM. Machine Learning, 1st ed. New York: McGraw-Hill, Inc.; 1997.
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature. 2015; 518(7540):529–33.
Montana DJ, Davis L. Training feedforward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’89.1989. p. 762–7.
Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: PAM. Springer: 2005. p. 41–54.
Moore AW, Zuev D. Internet traffic classification using bayesian analysis techniques. In: ACM SIGMETRICS Performance Evaluation Review, ACM, vol 33.2005. p. 50–60.
Moradi M, Zulkernine M. A neural network based system for intrusion detection and classification of attacks. In: Proceedings of the IEEE International Conference on Advances in Intelligent Systems-Theory and Applications.2004. p. 15–8.
Morgan JN, Sonquist JA. Problems in the analysis of survey data, and a proposal. J Am Stat Assoc. 1963; 58(302):415–34.
Moustapha AI, Selmic RR. Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Trans Instrum Meas. 2008; 57(5):981–8.
Mukkamala S, Janoski G, Sung A. Intrusion detection using neural networks and support vector machines.2002, pp. 1702–7.
Mukkamala S, Sung AH, Abraham A. Intrusion detection using ensemble of soft computing paradigms. In: Intelligent systems design and applications. Springer: 2003. p. 239–48.
Muniyandi AP, Rajeswari R, Rajaram R. Network anomaly detection by cascading k-means clustering and c4. 5 decision tree algorithm. Procedia Eng. 2012; 30:174–82.
Mushtaq MS, Augustin B, Mellouk A. Empirical study based on machine learning approach to assess the qos/qoe correlation. In: Networks and Optical Communications (NOC), 2012 17th European Conference on. IEEE: 2012. p. 1–7.
Nahm K, Helmy A, Jay Kuo CC. Tcp over multihop 802.11 networks: Issues and performance enhancement. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, NY, USA, MobiHoc ’05: 2005. p. 277–87.
Narendra KS, Thathachar MAL. Learning automata - a survey. IEEE Transactions on Systems. Man Cybern SMC-. 1974; 4(4):323–34.
Netflix Inc. Netflix. 2017. https://www.netflix.com/ . Accessed 01 Aug 2017.
Networks and Mobile Systems Group. Resilient overlay networks RON. 2017. http://nms.csail.mit.edu/ron/ . Accessed 27 Dec 2017.
Ng AY, Jordan MI. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, MIT Press, Cambridge, MA, USA, NIPS’01.2001. p. 841–8. http://dl.acm.org/citation.cfm?id=2.980539.2980648 .
Ng B, Hayes M, Seah WKG. Developing a traffic classification platform for enterprise networks with sdn: Experiences amp; lessons learned. In: IFIP Networking Conference.2015. p. 1–9.
Nguyen T, Armitage G. Synthetic sub-flow pairs for timely and stable ip traffic identification. In: Proc. Australian Telecommunication Networks and Application Conference.2006a.
Nguyen TT, Armitage G. Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world ip networks. In: Local Computer Networks, Proceedings 2006 31st IEEE Conference on. IEEE: 2006b. p. 369–76.
Nguyen TT, Armitage G, Branch P, Zander S. Timely and continuous machine-learning-based classification for interactive ip traffic. IEEE/ACM Trans Netw (TON). 2012; 20(6):1880–94.
Nguyen TTT, Armitage G. Clustering to assist supervised machine learning for real-time ip traffic classification. In: IEEE International Conference on Communications.2008a. p. 5857–62.
Nguyen TTT, Armitage G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutor. 2008b; 10(4):56–76.
NMapWin. Nmap security scanner. 2016. http://nmapwin.sourceforge.net/ . Accessed 1 Mar 2017.
NVIDIA. Graphics Processing Unit (GPU). 2017. http://www.nvidia.com/object/gpu.html . Accessed 01 Aug 2017.
Padhye J, Firoiu V, Towsley D, Kurose J. Modeling tcp throughput: A simple model and its empirical validation. In: Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM, New York, SIGCOMM ’98.1998. p. 303–14.
Pan ZS, Chen SC, Hu GB, Zhang DQ. Hybrid neural network and c4.5 for misuse detection.2003, pp. 2463–7.
Panda M, Abraham A, Patra MR. A hybrid intelligent approach for network intrusion detection. Procedia Eng. 2012; 30:1–9.
Papernot N, Goodfellow I, Sheatsley R, Feinman R, McDaniel P. cleverhans v1. 0.0: an adversarial machine learning library. 2016. arXiv preprint arXiv:161000768.
Park J, Tyan HR, Kuo CCJ. Internet traffic classification for scalable qos provision. In: Multimedia and Expo, vol 2006 IEEE International Conference on. IEEE: 2006. p. 1221–4.
Parkour M. Pcap traffic patterns. 2013. http://www.mediafire.com/?a49l965nlayad . Accessed 1 Mar 2017.
Parzen E. On estimation of a probability density function and mode. Ann Math Statist. 1962; 33(3):1065–76.
Paxson V. Bro: A system for detecting network intruders in real-time. Comput Netw. 1999; 31(23-24):2435–63.
Pcap-Analysis. Malware. 2017. http://www.pcapanalysis.com . Accessed 1 Mar 2017.
Pearl J. Bayesian networks: A model of self-activated memory for evidential reasoning. Irvine: University of California; 1985, pp. 329–34.
Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference.Morgan Kaufmann; 2014.
Peddabachigari S, Abraham A, Grosan C, Thomas J. Modeling intrusion detection system using hybrid intelligent systems. J netw comput appl. 2007; 30(1):114–32.
Pellegrini A, Di Sanzo P, Avresky DR. A machine learning-based framework for building application failure prediction models. In: Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International. IEEE: 2015. p. 1072–81.
Perdisci R, Ariu D, Fogla P, Giacinto G, Lee W. Mcpad: A multiple classifier system for accurate payload-based anomaly detection. Comput netw. 2009; 53(6):864–81.
Petrangeli S, Claeys M, Latré S, Famaey J, De Turck F. A multi-agent q-learning-based framework for achieving fairness in http adaptive streaming.IEEE; 2014, pp. 1–9.
Pfahringer B. Winning the kdd99 classification cup: bagged boosting. ACM SIGKDD Explor Newsl. 2000; 1(2):65–6.
Piamrat K, Ksentini A, Viho C, Bonnin JM. Qoe-aware admission control for multimedia applications in ieee 802.11 wireless networks. In: Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th. IEEE: 2008. p. 1–5.
Pietrabissa A. Admission control in umts networks based on approximate dynamic programming. Eur J control. 2008; 14(1):62–75.
Pietrabissa A, Priscoli FD, Di Giorgio A, Giuseppi A, Panfili M, Suraci V. An approximate dynamic programming approach to resource management in multi-cloud scenarios. Int J Control. 2017; 90(3):492–503.
Pinson MH, Wolf S. A new standardized method for objectively measuring video quality. IEEE Trans broadcast. 2004; 50(3):312–22.
Portnoy L, Eskin E, Stolfo S. Intrusion detection with unlabeled data using clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001). Citeseer: 2001.
Portoles-Comeras M, Requena-Esteso M, Mangues-Bafalluy J, Cardenete-Suriol M. Extreme: Combining the ease of management of multi-user experimental facilities and the flexibility of proof of concept testbeds. In: Testbeds and Research Infrastructures for the Development of Networks and Communities, s2006. TRIDENTCOM 2006 2nd International, Conference on. IEEE: 2006. p. 10.
Poupart P, Chen Z, Jaini P, Fung F, Susanto H, Geng Y, Chen L, Chen K, Jin H. Online flow size prediction for improved network routing.IEEE; 2016, pp. 1–6.
Prevost JJ, Nagothu K, Kelley B, Jamshidi M. Prediction of cloud data center networks loads using stochastic and neural models. IEEE: 2011. p. 276–281.
Proactcouk. ISS Internet Scanner. 2017. http://www.tech.proact.co.uk/iss/iss_system_scanner.htm . Accessed 28 Dec 2017.
Puget JF. What is machine learning? (IT best kept secret is optimization). 2016. https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Is_Machine_Learning . Accessed 01 Aug 2017.
Qader K, Adda M. Fault classification system for computer networks using fuzzy probabilistic neural network classifier (fpnnc) International Conference on Engineering Applications of Neural Networks. Springer: 2014. p. 217–26.
Quer G, Meenakshisundaram H, Tamma B, Manoj BS, Rao R, Zorzi M. Cognitive network inference through bayesian network analysis.2010, pp. 1–6.
Quer G, Baldo N, Zorzi M. Cognitive call admission control for voip over ieee 802.11 using bayesian networks. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. IEEE: 2011. p. 1–6.
Quinlan J. Discovering rules form large collections of examples: A case study. Edingburgh: Expert Systems in the Micro Electronic Age Edinburgh Press; 1979.
Quinlan JR. Learning with continuous classes. In: Proceedings of Australian Joint Conference on Artificial Intelligence, World Scientific.1992. p. 343–8.
Quinlan JR. C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc.; 1993.
Quinlan JR, et al, Vol. 1. Bagging, boosting, and c4. 5; 1996. 725–30.
Raina R, Battle A, Lee H, Packer B, Ng AY. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th international conference on Machine learning. ACM: 2007. p. 759–66.
Ramana BV, Murthy CSR. Learning-tcp: A novel learning automata based congestion window updating mechanism for ad hoc wireless networks. In: Proceedings of the 12th International Conference on High Performance Computing, Springer-Verlag, Berlin, Heidelberg, HiPC’05.2005. p. 454–464.
Ramana BV, Manoj BS, Murthy CSR. Learning-tcp: a novel learning automata based reliable transport protocol for ad hoc wireless networks. In: 2nd International Conference on Broadband Networks 2005.2005. p. 484–493. Vol. 1.
Ranzato M, Poultney C, Chopra S, LeCun Y. Efficient learning of sparse representations with an energy-based model. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA, USA, NIPS’06: 2006. p. 1137–44.
Rao S. Operational fault detection in cellular wireless base-stations. IEEE Trans Netw Serv Manag. 2006; 3(2):1–11.
Reichl P, Egger S, Schatz R, D’Alconzo A. The logarithmic nature of qoe and the role of the weber-fechner law in qoe assessment.IEEE; 2010, pp. 1–5.
Riiser H, Endestad T, Vigmostad P, Griwodz C, Halvorsen P. DATASET: HSDPA-bandwidth logs for mobile HTTP streaming scenarios. 2011. http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/ . Accessed 28 Dec 2017.
Riiser H, Endestad T, Vigmostad P, Griwodz C, Halvorsen P. Video streaming using a location-based bandwidth-lookup service for bitrate planning. ACM Trans Multimedia Comput Commun Appl. 2012; 8(3):24:1–24:19. https://doi.org/10.1145/2.240136.2240137 , http://doi.acm.org/10.1145/2.240136.2240137 .
Rix AW, Beerends JG, Hollier MP, Hekstra AP. Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs. In: Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, IEEE, vol 2.2001. p. 749–52.
Rosenblatt F. The perceptron, a perceiving and recognizing automaton. Report No. 85-460-1 Project PARA: Cornell Aeronautical Laboratory; 1957.
Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann Math Statist. 1956; 27(3):832–837.
Ross DA, Lim J, Lin RS, Yang MH. Incremental learning for robust visual tracking. Int J Comput Vision. 2008; 77(1-3):125–141.
Roughan M, Sen S, Spatscheck O, Duffield N. Class-of-service mapping for qos: a statistical signature-based approach to ip traffic classification. In: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement. ACM: 2004a. p. 135–148.
Roughan M, Zhang Y, Ge Z, Greenberg A. Abilene network; 2004b. http://www.maths.adelaide.edu.au/matthew.roughan/data/Abilene.tar.gz . Accessed 28 Dec 2017.
Rozhnova N, Fdida S. An effective hop-by-hop interest shaping mechanism for ccn communications. In: 2012 Proceedings IEEE INFOCOM Workshops: 2012. p. 322–327.
Ruiz M, Fresi F, Vela AP, Meloni G, Sambo N, Cugini F, Poti L, Velasco L, Castoldi P. Service-triggered failure identification/localization through monitoring of multiple parameters. In: ECOC 2016; 42nd European Conference on Optical Communication: Proceedings of. VDE: 2016. p. 1–3.
Rumelhart DE, Hinton GE, Williams RJ. Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1 In: Rumelhart DE, McClelland JL, PDP Research Group C, editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1. Cambridge, MA, USA, chap Learning Internal Representations by Error Propagation: MIT Press: 1986. p. 318–62.
Rummery GA, Niranjan M. On-line Q-learning using connectionist systems. CUED/F-INFENG/TR 166, Cambridge University Engineering Department. 1994.
Rüping S. mySVM. 2004. http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ . Accessed 28 Dec 2017.
Russell S, Norvig P. Artificial Intelligence: A Modern Approach, 3rd ed. Upper Saddle River: Prentice Hall Press; 2009.
Sabhnani M, Serpen G. Why machine learning algorithms fail in misuse detection on kdd intrusion detection data set. Intell data anal. 2004; 8(4):403–15.
Salakhutdinov R, Hinton G. Deep boltzmann machines. In: Artificial Intelligence and Statistics: 2009. p. 448–55.
Salama M, Eid H, Ramadan R, Darwish A, Hassanien A. Hybrid intelligent intrusion detection scheme. Soft comput ind appl. 2011;293–303.
Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959; 3(3):210–29.
Sangkatsanee P, Wattanapongsakorn N, Charnsripinyo C. Practical real-time intrusion detection using machine learning approaches. Comput Commun. 2011; 34(18):2227–35.
Schapire RE. The strength of weak learnability. Mach Learn. 1990; 5(2):197–227.
Schatzmann D, Mühlbauer W, Spyropoulos T, Dimitropoulos X. Digging into https: Flow-based classification of webmail traffic. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement: 2010. p. 322–27.
Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distribution. Neural comput. 2001; 13(7):1443–71.
Seligman M, Fall K, Mundur P. Alternative custodians for congestion control in delay tolerant networks. In: Proceedings of the 2006 SIGCOMM Workshop on Challenged Networks, CHANTS ’06.New York: ACM: 2006. p. 229–36.
Servin A, Kudenko D. Multi-agent reinforcement learning for intrusion detection: A case study and evaluation. In: German Conference on Multiagent System Technologies. Springer: 2008. p. 159–70.
Shaikh J, Fiedler M, Collange D. Quality of experience from user and network perspectives. annals of telecommun-annales des telecommun. 2010; 65(1-2):47–57.
Shbair WM, Cholez T, Francois J, Chrisment I. A multi-level framework to identify https services. In: IEEE/IFIP Network Operations and Management Symposium (NOMS)2016. p. 240–8.
Shi R, Zhang J, Chu W, Bao Q, Jin X, Gong C, Zhu Q, Yu C, Rosenberg S. Mdp and machine learning-based cost-optimization of dynamic resource allocation for network function virtualization. In: Serv Comput (SCC) 2015 IEEE International Conference on. IEEE: 2015. p. 65–73.
Shon T, Moon J. A hybrid machine learning approach to network anomaly detection. Inf Sci. 2007; 177(18):3799–821.
Silva AP, Obraczka K, Burleigh S, Hirata CM. Smart congestion control for delay- and disruption tolerant networks. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).2016. p. 1–9.
Smolensky P. Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1 In: Rumelhart DE, McClelland JL, PDP Research Group C, editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1„ MIT Press, Cambridge, MA, USA, chap Information Processing in Dynamical Systems: Foundations of Harmony Theory.1986. p. 194–281.
Snow A, Rastogi P, Weckman G. Assessing dependability of wireless networks using neural networks. In: Military Communications Conference, 2005. MILCOM 2005. IEEE. IEEE: 2005. p. 2809–15.
Sommer R, Paxson V. Outside the closed world: On using machine learning for network intrusion detection. In: Security and Privacy (SP), 2010 IEEE Symposium on, IEEE: 2010. p. 305–16.
Sondik EJ. The optimal control of partially observable markov decision processes. PhD thesis. California: Stanford University; 1971.
Soysal M, Schmidt EG. Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison. Perform Eval. 2010; 67(6):451–67.
Sprint. IP network performance. 2017. https://www.sprint.net/performance/ . Accessed 28 Dec 2017.
Srihari SN, Kuebert EJ. Integration of hand-written address interpretation technology into the united states postal service remote computer reader system. In: Proceedings of the 4th International Conference on Document Analysis and Recognition, ICDAR ’97. Washington: IEEE Computer Society: 1997. p. 892–6.
Stein G, Chen B, Wu AS, Hua KA. Decision tree classifier for network intrusion detection with ga-based feature selection. In: Proceedings of the 43rd annual Southeast regional conference-Volume 2. ACM: 2005. p. 136–41.
Steinhaus H. Sur la division des corp materiels en parties. Bull Acad Polon Sci. 1956; 1:801–4.
Stone P, Veloso M. Team-partitioned, opaque-transition reinforcement learning. In: Proceedings of the third annual conference on Autonomous Agents. ACM: 1999. p. 206–12.
Sun J, Zukerman M. An adaptive neuron aqm for a stable internet. In: Proceedings of the 6th International IFIP-TC6 Conference on Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, Springer-Verlag, Berlin, Heidelberg, NETWORKING’07.2007. p. 844–54.
Sun J, Chan S, Ko Kt, Chen G, Zukerman M. Neuron pid: A robust aqm scheme. In: Proceedings of the Australian Telecommunication Networks and Applications Conference (ATNAC) 2006.2006. p. 259–62.
Sun J, Chan S, Zukerman M. Iapi: An intelligent adaptive pi active queue management scheme. Comput Commun. 2012; 35(18):2281–93.
Sun R, Tatsumi S, Zhao G. Q-map: A novel multicast routing method in wireless ad hoc networks with multiagent reinforcement learning. In: TENCON’02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol 1. IEEE: 2002. p. 667–670.
Sun R, Yang B, Peng L, Chen Z, Zhang L, Jing S. Traffic classification using probabilistic neural networks. In: Natural computation (ICNC), 2010 sixth international conference on, vol. 4. IEEE: 2010. p. 1914–9.
Sun Y, Yin X, Jiang J, Sekar V, Lin F, Wang N, Liu T, Sinopoli B. Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction. In: Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM: 2016. p. 272–85.
Sutton RS. Learning to predict by the methods of temporal differences. Mach learn. 1988; 3(1):9–44.
Sutton RS, Barto AG. A temporal-difference model of classical conditioning. In: Proceedings of the ninth annual conference of the cognitive science society. Seattle, WA: 1987. p. 355–78.
Sutton RS, Barto AG. Reinforcement Learning: An Introduction, 2nd ed. MIT Press; 2016.
Tang TA, Mhamdi L, McLernon D, Zaidi SAR, Ghogho M. Deep learning approach for network intrusion detection in software defined networking. In: Wireless Networks and Mobile Communications (WINCOM), 2016 International Conference on. IEEE: 2016. p. 258–263.
Tarraf AA, Habib IW, Saadawi TN. Congestion control mechanism for atm networks using neural networks. In: Communications 1995. ICC ’95 Seattle, ’Gateway to Globalization’ 1995 IEEE International Conference on, vol 1.1995. p. 206–10.
Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the kdd cup 99 data set.IEEE; 2009, pp. 1–6.
Telecommunication Networks Group - Politecnico di Torino. Skype testbed traces, TSTAT - TCP Statistic and Analysis Tool. 2008. http://tstat.tlc.polito.it/traces-skype.shtml . Accessed 01 Aug 2017.
Tesauro G. Practical issues in temporal difference learning. Mach Learn. 1992; 8(3):257–77.
Tesauro G. Reinforcement learning in autonomic computing: A manifesto and case studies. IEEE Internet Comput. 2007; 11(1):22–30.
Tesauro G, et al. Online resource allocation using decompositional reinforcement learning.2005. pp. 886–91.
Testolin A, Zanforlin M, De Grazia MDF, Munaretto D, Zanella A, Zorzi M, Zorzi M. A machine learning approach to qoe-based video admission control and resource allocation in wireless systems. In: Ad Hoc Networking Workshop (MED-HOC-NET), 2014 13th Annual, Mediterranean. IEEE: 2014. p. 31–38.
TFreak. Smurf tool. 2003. www.phreak.org/archives/exploits/denial/smurf.c .
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol). 1996; 58(1):267–288.
Tong H, Brown TX. Adaptive call admission control under quality of service constraints: a reinforcement learning solution. IEEE J sel Areas Commun. 2000; 18(2):209–21.
Tsai CF, Hsu YF, Lin CY, Lin WY. Intrusion detection by machine learning: A review. Expert Systems with Applications. 2009; 36(10):11,994–12,000.
Tsetlin M. Automaton Theory and Modeling of Biological Systems. Automaton Theory and Modeling of Biological Systems.Academic Press; 1973.
UCI KDD Archive. 2005. https://kdd.ics.uci.edu/ . Accessed 01 Aug 2017.
University of California San Diego Supercomputer Center. CAIDA: Center for Applied Internet Data Analysis. 2017. http://www.caida.org . Accessed 01 Aug 2017.
Vassis D, Kampouraki A, Belsis P, Skourlas C. Admission control of video sessions over ad hoc networks using neural classifiers.IEEE; 2014, pp. 1015–20.
Vega MT, Mocanu DC, Liotta A. Unsupervised deep learning for real-time assessment of video streaming services. Multimedia Tools Appl. 2017;1–25.
Vengerov D. A reinforcement learning approach to dynamic resource allocation. Eng Appl Artif Intell. 2007; 20(3):383–90.
Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory. 1967; 13(2):260–9.
Wagner C, François J, Engel T, et al. Machine learning approach for ip-flow record anomaly detection. In: International Conference on Research in Networking. Springer: 2011. p. 28–39.
WAND Network Research Group. WITS: Waikato Internet Traffic Storage. 2017. https://wand.net.nz/wits . Accessed 01 Aug 2017.
Wang J, Qiu Y. A new call admission control strategy for lte femtocell networks. In: 2nd international conference on advances in computer science and engineering.2013.
Wang K, Stolfo SJ. Anomalous payload-based network intrusion detection. In: RAID, vol 4. Springer: 2004. p. 203–22.
Wang M, Cui Y, Wang X, Xiao S, Jiang J. Machine learning for networking: Workflow, advances and opportunities. IEEE Netw. 2018a; 32(2):92–9.
Wang P, Wang T. Adaptive routing for sensor networks using reinforcement learning. In: Computer and Information Technology, 2006. CIT’06. The Sixth IEEE International Conference on. IEEE: 2006. p. 219.
Wang P, Lin SC, Luo M. A framework for qos-aware traffic classification using semi-supervised machine learning in sdns. In: Services Computing (SCC), 2016 IEEE International Conference on. IEEE: 2016. p. 760–5.
Wang R, Valla M, Sanadidi MY, Ng BKF, Gerla M. Efficiency/friendliness tradeoffs in TCP westwood. In: Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.2002. p. 304–11.
Wang R, Liu Y, Yang Y, Zhou X. Solving the app-level classification problem of p2p traffic via optimized support vector machines. In: Intelligent Systems Design and Applications, 2006. ISDA’06. Sixth International Conference on, IEEE, vol 2: 2006. p. 534–9.
Wang X, Zhang Q, Ren J, Xu S, Wang S, Yu S. Toward efficient parallel routing optimization for large-scale sdn networks using gpgpu. J Netw Comput Appl. 2018b.
Wang Y, Martonosi M, Peh LS. Predicting link quality using supervised learning in wireless sensor networks. ACM SIGMOBILE Mob Comput Commun Rev. 2007; 11(3):71–83.
Wang Y, Xiang Y, Yu S. Internet traffic classification using machine learning: a token-based approach. IEEE: 2011. p. 285–9.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE trans image process. 2004; 13(4):600–12.
Wang Z, Zhang M, Wang D, Song C, Liu M, Li J, Lou L, Liu Z. Failure prediction using machine learning and time series in optical network. Optics Express. 2017; 25(16):18,553–18,565.
Watanabe A, Ishibashi K, Toyono T, Kimura T, Watanabe K, Matsuo Y, Shiomoto K. Workflow extraction for service operation using multiple unstructured trouble tickets.IEEE; 2016, pp. 652–8.
Watkins CJ. Models of delayed reinforcement learning. PhD thesis: Psychology Department, Cambridge University; 1989.
Werbos P. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis: Harvard University; 1975.
Wernecke KD. A coupling procedure for the discrimination of mixed data. Biometrics. 1992; 48(2):497–506.
WIDE Project. MAWI Working Group Traffic Archive. 2017. http://mawi.wide.ad.jp/mawi . Accessed 01 Aug 2017.
Williams M. Net tools 5. 2011. https://www.techworld.com/download/networking-tools/net-tools-5-3248881/ . Accessed 1 Mar 2017.
Williams N, Zander S, Armitage G. A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification. ACM SIGCOMM Comput Commun Rev. 2006; 36(5):5–16.
Winstein K, Balakrishnan H. Tcp ex machina: Computer-generated congestion control. In: Proceedings of the ACM SIGCOMM 201 Conference on SIGCOMM, SIGCOMM ’13. New York: ACM: 2013. p. 123–34.
Witten IH. An adaptive optimal controller for discrete-time markov environments. Inf Control. 1977; 34(4):286–95.
Wolpert DH, Tumer K, Frank J. Using collective intelligence to route internet traffic. Adv neural inf process syst. 1999;952–60.
Wolski R. Dynamically forecasting network performance using the network weather service. Cluster Comput. 1998; 1(1):119–32.
Wu C, Meleis W. Fuzzy kanerva-based function approximation for reinforcement learning. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).2009. p. 1257–8.
Xia B, Wahab MH, Yang Y, Fan Z, Sooriyabandara M. Reinforcement learning based spectrum-aware routing in multi-hop cognitive radio networks. In: Cognitive Radio Oriented Wireless Networks and Communications, 2009. CROWNCOM’09. 4th International, Conference on. IEEE: 2009. p. 1–5.
Xu K, Tian Y, Ansari N. Tcp-jersey for wireless ip communications. IEEE J Sel Areas Commun. 2004; 22(4):747–56.
Xu L, Krzyzak A, Suen CY. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems. Man Cybern. 1992; 22(3):418–35.
Yan Q, Lei Q. A new active queue management algorithm based on self-adaptive fuzzy neural-network pid controller. In: 2011 International Conference on, Internet Technology and Applications: 2011. p. 1–4.
Yang P, Luo W, Xu L, Deogun J, Lu Y. Tcp congestion avoidance algorithm identification. In: 2011 31st International Conference on Distributed Computing Systems.2011. p. 310–21.
Yi C, Afanasyev A, Moiseenko I, Wang L, Zhang B, Zhang L. A case for stateful forwarding plane. Comput Commun. 2013; 36(7):779–791.
YouTube LLC. YouTube. 2017. https://www.youtube.com/ . Accessed 01 Aug 2017.
Yu E, Chen CR. Traffic prediction using neural networks. In: Proceedings of IEEE GLOBECOM. IEEE: 1993. p. 991–5.
Yu X, Qiao C, Liu Y. Tcp implementations and false time out detection in obs networks. In: IEEE INFOCOM 2004, vol 2.2004. p. 774–84.
Zalewski M, Stearns W. p0f. 2014. http://lcamtuf.coredump.cx/p0f . Accessed 1 Mar 2017.
Zander S, Nguyen T, Armitage G. Automated traffic classification and application identification using machine learning.IEEE; 2005, pp. 250–7.
Zanero S, Savaresi SM. Unsupervised learning techniques for an intrusion detection system: ACM; 2004, pp. 412–9.
Zhang C, Jiang J, Kamel M. Intrusion detection using hierarchical neural networks. Pattern Recogn Lett. 2005; 26(6):779–91.
Zhang J, Zulkernine M. Anomaly based network intrusion detection with unsupervised outlier detection. In: Communications, 2006. ICC’06. IEEE International Conference on. IEEE: 2006. p. 2388–93.
Zhang J, Chen C, Xiang Y, Zhou W, Xiang Y. Internet traffic classification by aggregating correlated naive bayes predictions. IEEE Trans Inf Forensic Secur. 2013; 8(1):5–15.
Zhang J, Chen X, Xiang Y, Zhou W, Wu J. Robust network traffic classification. IEEE/ACM Trans Netw (TON). 2015; 23(4):1257–70.
Zhani MF, Elbiaze H, Kamoun F. α_snfaqm: an active queue management mechanism using neurofuzzy prediction. In: 2007 12th IEEE Symposium on Computers and Communications.2007. p. 381–6.
Zhou C, Di D, Chen Q, Guo J. An adaptive aqm algorithm based on neuron reinforcement learning. In: 2009 IEEE International Conference on Control and Automation: 2009. p. 1342–6.
Zhu Y, Zhang G, Qiu J. Network traffic prediction based on particle swarm bp neural network. JNW. 2013; 8(11):2685–91.
Zineb AB, Ayadi M, Tabbane S. Cognitive radio networks management using an anfis approach with qos/qoe mapping scheme. IEEE; 2015, pp. 1–6.