A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
United National Population Division, 2009, vol. 9, 1
Tripathi, 2016, Renewable energy: an overview on its contribution in current energy scenario of India, Renew. Sustain. Energy Rev., 60, 226, 10.1016/j.rser.2016.01.047
Akpinar-Ferrand, 2010, Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India, Environ. Sci. Policy, 13, 702, 10.1016/j.envsci.2010.09.009
Chen, 2014, Research progress of phase change materials (PCMs) embedded with metal foam (a review), Proc. Mater. Sci., 4, 369
Panwar, 2014, Overview of renewable energy resources of India, Inter. J. Adv. Res. Electric., Electron. Instrumentat. Eng., 3, 7118
Soytas, 2009, Energy consumption, economic growth, and carbon emissions: challenges faced by an EU candidate member, Ecol. Econ., 68, 1667, 10.1016/j.ecolecon.2007.06.014
Davis, 2015, Contribution of air conditioning adoption to future energy use under global warming, Proc. Natl. Acad. Sci. U. S. A, 112, 5962, 10.1073/pnas.1423558112
Alam, 2014, vol. 3, 8871
Isaac, 2009, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, Energy Policy, 37, 507, 10.1016/j.enpol.2008.09.051
Bilgili, 2016, vol. 20, 66
International Energy Agency, 2011
Waqas, 2013, Phase change material (PCM) storage for free cooling of buildings - a review, Renew. Sustain. Energy Rev., 18, 607, 10.1016/j.rser.2012.10.034
J.S. Dorgan, C.E., Elleson, ASHRAE’s New Design Guide for Cool Thermal Storage, (n.d.).
Chan, 2006, Performance evaluation of district cooling plant with ice storage, Energy, 31, 2414, 10.1016/j.energy.2005.11.022
Boonnasa, 2010, The chilled water storage analysis for a university building cooling system, Appl. Therm. Eng., 30, 1396, 10.1016/j.applthermaleng.2010.02.029
Veerakumar, 2016, Phase change material based cold thermal energy storage: materials, techniques and applications - a review, Int. J. Refrig., 67, 271, 10.1016/j.ijrefrig.2015.12.005
Fang, 2014, Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials, Renew. Sustain. Energy Rev., 40, 237, 10.1016/j.rser.2014.07.179
Salunkhe, 2012, A review on effect of phase change material encapsulation on the thermal performance of a system, Renew. Sustain. Energy Rev., 16, 5603, 10.1016/j.rser.2012.05.037
Sharifi, 2012, Heat pipe-assisted melting of a phase change material, Int. J. Heat Mass Transf., 55, 3458, 10.1016/j.ijheatmasstransfer.2012.03.023
Khodadadi, 2013, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 24, 418, 10.1016/j.rser.2013.03.031
Delgado, 2012, Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications, Renew. Sustain. Energy Rev., 16, 253, 10.1016/j.rser.2011.07.152
Liu, 2015, Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement, Nano Energy, 13, 814, 10.1016/j.nanoen.2015.02.016
Gao, 2009, Experimental investigation of heat conduction mechanisms in nanofluids, Clue on Clustering, 1
Parameshwaran, 2014, Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings, Energy Build., 69, 202, 10.1016/j.enbuild.2013.09.052
Mantilla Gilart, 2012, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205, 10.1016/j.solmat.2012.06.014
Ke, 2016, Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy, Renew. Energy, 99, 1, 10.1016/j.renene.2016.06.033
Hussain, 2017, Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications, Energy Build., 143, 17, 10.1016/j.enbuild.2017.03.011
Sayyar, 2014, Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions, Energy Build., 75, 249, 10.1016/j.enbuild.2014.02.018
Zhang, 2012, Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling, Sol. Energy Mater. Sol. Cells, 96, 124, 10.1016/j.solmat.2011.09.032
Jeon, 2012, High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system, Sol. Energy Mater. Sol. Cells, 101, 51, 10.1016/j.solmat.2012.02.028
Harish, 2013, Anomalous thermal conduction characteristics of phase change composites with single-walled carbon nanotube inclusions, J. Phys. Chem. C, 117, 15409, 10.1021/jp4046512
Ma, 2016, Nano-enhanced phase change materials for improved building performance, Renew. Sustain. Energy Rev., 58, 1256, 10.1016/j.rser.2015.12.234
Zhai, 2013, A review on phase change cold storage in air-conditioning system: materials and applications, Renew. Sustain. Energy Rev., 22, 108, 10.1016/j.rser.2013.02.013
Thambidurai, 2015, Review on phase change material based free cooling of buildings-The way toward sustainability, J. Energy Stor., 4, 74, 10.1016/j.est.2015.09.003
Sharma, 2015, Developments in organic solid-liquid phase change materials and their applications in thermal energy storage, Energy Convers. Manag., 95, 193, 10.1016/j.enconman.2015.01.084
Soares, 2017, A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment, Renew. Sustain. Energy Rev., 77, 845, 10.1016/j.rser.2017.04.027
Lin, 2018, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev., 82, 2730, 10.1016/j.rser.2017.10.002
Simen Edsjø Kalnæs, 2015, Phase change materials and products for building applications: a state-of-the-art review and future research opportunities, Energy Build., 94, 150, 10.1016/j.enbuild.2015.02.023
Yu, 2014, Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 120, 549, 10.1016/j.solmat.2013.09.037
Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031
Motahar, 2014, Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles, Int. Commun. Heat Mass Transf., 59, 68, 10.1016/j.icheatmasstransfer.2014.10.016
Sobolčiak, 2016, Heat transfer performance of paraffin wax based phase change materials applicable in building industry, Appl. Therm. Eng., 107, 1313, 10.1016/j.applthermaleng.2016.07.050
Nabil, 2013, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials, Int. J. Heat Mass Transf., 67, 301, 10.1016/j.ijheatmasstransfer.2013.08.010
Zeng, 2014, Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 127, 122, 10.1016/j.solmat.2014.04.015
Mei, 2011, Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 2772, 10.1016/j.solmat.2011.05.024
Peng, 2011, Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: experimental measurement, Int. J. Refrig., 34, 1833, 10.1016/j.ijrefrig.2011.07.009
Al Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int. J. Heat Mass Transf., 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059
Sciacovelli, 2013, Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement, Int. J. Energy Res., 37, 1610, 10.1002/er.2974
Adil, 2014, Numerical prediction of heat transfer characteristics of nanofluids in a minichannel flow, J. Energy, 7
Oya, 2013, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles, Appl. Therm. Eng., 61, 825, 10.1016/j.applthermaleng.2012.05.033
Xiang, 2010, Thermal conductivity of exfoliated graphite nanoplatelet paper, Carbon, 49, 773, 10.1016/j.carbon.2010.10.003
Liu, 2016, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 62, 305, 10.1016/j.rser.2016.04.057
Park, 2014, Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement, J. Ind. Eng. Chem., 20, 1911, 10.1016/j.jiec.2013.09.011
Sari, 2008, Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage, Energy Sources, Part A Recovery, Util. Environ. Eff., 30, 464, 10.1080/15567030601003700
Wi, 2017, Evaluation of energy e ffi cient hybrid hollow plaster panel using phase change material/xGnP composites, Appl. Energy, 1
Kim, 2016, Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials, Int. J. Heat Mass Transf., 95, 735, 10.1016/j.ijheatmasstransfer.2015.12.049
Putra, 2017, Characterization of the thermal stability of RT 22 HC/graphene using a thermal cycle method based on thermoelectric methods, Appl. Therm. Eng., 124, 62, 10.1016/j.applthermaleng.2017.06.009
Liu, 2016, Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management, J. Mater. Chem. A., 4, 18134, 10.1039/C6TA08850C
Zhou, 2011, Experimental investigations on heat transfer in phase change materials ( PCMs ) embedded in porous materials, Appl. Therm. Eng., 31, 970, 10.1016/j.applthermaleng.2010.11.022
Li, 2014, Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences, Meas. Sci. Technol., 25
Yang, 2016, Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability, J. Mater. Chem. A., 4, 18067, 10.1039/C6TA07869A
Kim, 2014, Thermal performance enhancement of mortar mixed with octadecane/xGnP SSPCM to save building energy consumption, Sol. Energy Mater. Sol. Cells, 122, 257, 10.1016/j.solmat.2013.12.015
Parameshwaran, 2013, Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles, J. Therm. Anal. Calorim., 114, 845, 10.1007/s10973-013-3064-9
Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim. Acta, 647, 15, 10.1016/j.tca.2016.11.010
Fang, 2013, Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets, Energy Fuels, 27, 4041, 10.1021/ef400702a
Sushobhan, 2017, Thermal modeling of melting of nano based phase change material for improvement of thermal energy storage, Energy Procedia, 109, 385, 10.1016/j.egypro.2017.03.035
Zeng, 2013, An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity, Int. J. Heat Mass Transf., 66, 111, 10.1016/j.ijheatmasstransfer.2013.07.022
Shaikh, 2008, Carbon nanoadditives to enhance latent energy storage of phase change materials, J. Appl. Phys., 103, 10.1063/1.2903538
Fan, 2017, Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials, Int. J. Heat Mass Transf., 95, 1057, 10.1016/j.ijheatmasstransfer.2016.01.013
Xia, 2017, Synthesis of three-dimensional graphene aerogel encapsulating n-octadecane for enhancing phase-change behavior and thermal conductivity, J. Mater. Chem. A., 00, 1
Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018
Wang, 2017, Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage, Appl. Energy, 188, 97, 10.1016/j.apenergy.2016.11.122
Chen, 2018, Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting, Nano Energy, 49, 86, 10.1016/j.nanoen.2018.03.075
Jeong, 2013, Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 117, 87, 10.1016/j.solmat.2013.05.038
Li, 2010, Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials, Appl. Phys. Mater. Sci. Process, 100, 1143, 10.1007/s00339-010-5724-y
He, 2016, Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar, Energy Build., 133, 547, 10.1016/j.enbuild.2016.10.016
Ke, 2016, Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver, J. Therm. Anal. Calorim., 123, 1293, 10.1007/s10973-015-5025-y
Wi, 2015, Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings, Sol. Energy Mater. Sol. Cells, 143, 168, 10.1016/j.solmat.2015.06.040
Jeong, 2015, Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 139, 65, 10.1016/j.solmat.2015.03.010
Ke, 2017, Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes, J. Therm. Anal. Calorim., 129, 1533, 10.1007/s10973-017-6399-9
Wei, 2017, Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 166, 1, 10.1016/j.solmat.2017.03.003
Karaipekli, 2017, Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers. Manag., 134, 373, 10.1016/j.enconman.2016.12.053
Wang, 2017, Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat, J. Mater. Chem., 5, 24321, 10.1039/C7TA05594C
Meng, 2013, Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials, J. Therm. Anal. Calorim., 111, 377, 10.1007/s10973-012-2349-8
Tang, 2015, Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage, Energy Build., 109, 353, 10.1016/j.enbuild.2015.09.074
Wu, 2015, Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage, Energy Convers. Manag., 101, 164, 10.1016/j.enconman.2015.05.006
Sari, 2008, Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage, Mater. Chem. Phys., 109, 459, 10.1016/j.matchemphys.2007.12.016
Fang, 2015, Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control, Energy Convers. Manag., 103, 251, 10.1016/j.enconman.2015.06.062
Xue, 2004, Effect of liquid layering at the liquid-solid interface on thermal transport, Int. J. Heat Mass Transf., 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016
Babaei, 2013, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene, Int. J. Heat Mass Transf., 58, 209, 10.1016/j.ijheatmasstransfer.2012.11.013
Fan, 2012, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM), Int. J. Therm. Sci., 62, 120, 10.1016/j.ijthermalsci.2011.11.005
Das, 2017, Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system, Appl. Therm. Eng., 125, 880, 10.1016/j.applthermaleng.2017.07.084
Srinivasan, 2017, Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n -eicosane, Int. J. Heat Mass Transf., 114, 318, 10.1016/j.ijheatmasstransfer.2017.06.081
Maxwell, 1881, 1
Li, 2017, Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: a molecular dynamics study, Materials, 10
Kant, 2017, Heat transfer study of phase change materials with graphene nano particle for thermal energy storage, Sol. Energy, 146, 453, 10.1016/j.solener.2017.03.013
Nan, 2004, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549, 10.1063/1.1808874
Nan, 1997, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 6692, 10.1063/1.365209
Yu, 2004, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model, J. Nanoparticle Res., 6, 355, 10.1007/s11051-004-2601-7
Temirel, 2017, Solidification of additive-enhanced phase change materials in spherical enclosures with convective cooling, Appl. Therm. Eng., 111, 134, 10.1016/j.applthermaleng.2016.09.090
Mesalhy, 2005, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix, Energy Convers. Manag., 46, 847, 10.1016/j.enconman.2004.06.010
Wang, 2016, Heat transfer enhancement of phase change composite material: copper foam/paraffin, Renew. Energy, 96, 960, 10.1016/j.renene.2016.04.039
Koo, 2004, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 6, 577, 10.1007/s11051-004-3170-5
Arasu, 2012, Numerical study on melting of paraffin wax with Al 2O 3 in a square enclosure, Int. Commun. Heat Mass Transf., 39, 8, 10.1016/j.icheatmasstransfer.2011.09.013
Valan Arasu, 2011, Thermal performance enhancement of paraffin wax with AL 2O 3 and CuO nanoparticles - a numerical study, Front. Heat Mass Transf., 2, 1
Sheikholeslami, 2018, Finite element method for PCM solidification in existence of CuO nanoparticles, J. Mol. Liq., 265, 347, 10.1016/j.molliq.2018.05.132
Sheikholeslami, 2018, Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM, J. Taiwan Instit. Chem. Eng., 86, 25, 10.1016/j.jtice.2018.03.013
Sheikholeslami, 2018, Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles, J. Mol. Liq., 263, 303, 10.1016/j.molliq.2018.04.144
Sheikholeslami Kandelousi, 2014, KKL correlation for simulation of nanofluid flow and heat transfer inapermeable channel, Phys. Lett., Section A: General, Atom. Solid State Phys., 378, 3331, 10.1016/j.physleta.2014.09.046
Parker, 1961, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys., 32, 1679, 10.1063/1.1728417
Lamas, 2013
Brown, 2011, XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag., 4, 161
Einstein, 1905, Investigations o n the theory ,the brownian movement, Ann. Phys., 17, 549, 10.1002/andp.19053220806
Derjaguin, 1993, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci., 43, 30, 10.1016/0079-6816(93)90013-L
Verwey, 1955, Theory of the stability of lyophobic colloids, J. Colloid Sci., 10, 224, 10.1016/0095-8522(55)90030-1
Li, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420
Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684
Vajjha, 2010, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow, 10.1016/j.ijheatfluidflow.2010.02.016
Abdollahzadeh, 2014, Effects of Brownian motion on freezing of PCM containing nanoparticles, Therm. Sci., 20, 1533, 10.2298/TSCI140413094A
Michaelides, 2015, Brownian movement and thermophoresis of nanoparticles in liquids, Int. J. Heat Mass Transf., 81, 179, 10.1016/j.ijheatmasstransfer.2014.10.019
Balberg, 1984, vol. 30, 3933
Ghadimi, 2011, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf., 54, 4051, 10.1016/j.ijheatmasstransfer.2011.04.014
Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transf., 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017
Ramakrishnan, 2017, Heat transfer performance enhancement of paraffin/expanded perlite phase change composites with graphene nano-platelets, Energy Procedia, 105, 4866, 10.1016/j.egypro.2017.03.964
Tabassum, 2015, Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate, J. Materiom., 1, 229, 10.1016/j.jmat.2015.07.002
Harish, 2017, Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions, Appl. Therm. Eng., 114, 1240, 10.1016/j.applthermaleng.2016.10.109