A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications

Energy Storage Materials - Tập 24 - Trang 52-74 - 2020
B. Eanest Jebasingh1, A. Valan Arasu1
1Department of Mechanical Engineering Thiagarjar College of Engineering, Madurai, 625015, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

United National Population Division, 2009, vol. 9, 1

Tripathi, 2016, Renewable energy: an overview on its contribution in current energy scenario of India, Renew. Sustain. Energy Rev., 60, 226, 10.1016/j.rser.2016.01.047

Akpinar-Ferrand, 2010, Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India, Environ. Sci. Policy, 13, 702, 10.1016/j.envsci.2010.09.009

International Energy Agency, India Energy Outlook, 2015, 1, 10.1787/weo-2015-en

Chen, 2014, Research progress of phase change materials (PCMs) embedded with metal foam (a review), Proc. Mater. Sci., 4, 369

Panwar, 2014, Overview of renewable energy resources of India, Inter. J. Adv. Res. Electric., Electron. Instrumentat. Eng., 3, 7118

Soytas, 2009, Energy consumption, economic growth, and carbon emissions: challenges faced by an EU candidate member, Ecol. Econ., 68, 1667, 10.1016/j.ecolecon.2007.06.014

Davis, 2015, Contribution of air conditioning adoption to future energy use under global warming, Proc. Natl. Acad. Sci. U. S. A, 112, 5962, 10.1073/pnas.1423558112

Alam, 2014, vol. 3, 8871

Isaac, 2009, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, Energy Policy, 37, 507, 10.1016/j.enpol.2008.09.051

Bilgili, 2016, vol. 20, 66

International Energy Agency, 2011

Waqas, 2013, Phase change material (PCM) storage for free cooling of buildings - a review, Renew. Sustain. Energy Rev., 18, 607, 10.1016/j.rser.2012.10.034

J.S. Dorgan, C.E., Elleson, ASHRAE’s New Design Guide for Cool Thermal Storage, (n.d.).

Chan, 2006, Performance evaluation of district cooling plant with ice storage, Energy, 31, 2414, 10.1016/j.energy.2005.11.022

Boonnasa, 2010, The chilled water storage analysis for a university building cooling system, Appl. Therm. Eng., 30, 1396, 10.1016/j.applthermaleng.2010.02.029

Veerakumar, 2016, Phase change material based cold thermal energy storage: materials, techniques and applications - a review, Int. J. Refrig., 67, 271, 10.1016/j.ijrefrig.2015.12.005

Fang, 2014, Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials, Renew. Sustain. Energy Rev., 40, 237, 10.1016/j.rser.2014.07.179

Salunkhe, 2012, A review on effect of phase change material encapsulation on the thermal performance of a system, Renew. Sustain. Energy Rev., 16, 5603, 10.1016/j.rser.2012.05.037

Sharifi, 2012, Heat pipe-assisted melting of a phase change material, Int. J. Heat Mass Transf., 55, 3458, 10.1016/j.ijheatmasstransfer.2012.03.023

Khodadadi, 2013, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 24, 418, 10.1016/j.rser.2013.03.031

Delgado, 2012, Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications, Renew. Sustain. Energy Rev., 16, 253, 10.1016/j.rser.2011.07.152

Liu, 2015, Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement, Nano Energy, 13, 814, 10.1016/j.nanoen.2015.02.016

Gao, 2009, Experimental investigation of heat conduction mechanisms in nanofluids, Clue on Clustering, 1

Parameshwaran, 2014, Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings, Energy Build., 69, 202, 10.1016/j.enbuild.2013.09.052

Mantilla Gilart, 2012, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205, 10.1016/j.solmat.2012.06.014

Ke, 2016, Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy, Renew. Energy, 99, 1, 10.1016/j.renene.2016.06.033

Hussain, 2017, Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications, Energy Build., 143, 17, 10.1016/j.enbuild.2017.03.011

Sayyar, 2014, Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions, Energy Build., 75, 249, 10.1016/j.enbuild.2014.02.018

Zhang, 2012, Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling, Sol. Energy Mater. Sol. Cells, 96, 124, 10.1016/j.solmat.2011.09.032

Jeon, 2012, High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system, Sol. Energy Mater. Sol. Cells, 101, 51, 10.1016/j.solmat.2012.02.028

Harish, 2013, Anomalous thermal conduction characteristics of phase change composites with single-walled carbon nanotube inclusions, J. Phys. Chem. C, 117, 15409, 10.1021/jp4046512

Ma, 2016, Nano-enhanced phase change materials for improved building performance, Renew. Sustain. Energy Rev., 58, 1256, 10.1016/j.rser.2015.12.234

Zhai, 2013, A review on phase change cold storage in air-conditioning system: materials and applications, Renew. Sustain. Energy Rev., 22, 108, 10.1016/j.rser.2013.02.013

Thambidurai, 2015, Review on phase change material based free cooling of buildings-The way toward sustainability, J. Energy Stor., 4, 74, 10.1016/j.est.2015.09.003

Sharma, 2015, Developments in organic solid-liquid phase change materials and their applications in thermal energy storage, Energy Convers. Manag., 95, 193, 10.1016/j.enconman.2015.01.084

Soares, 2017, A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment, Renew. Sustain. Energy Rev., 77, 845, 10.1016/j.rser.2017.04.027

Lin, 2018, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev., 82, 2730, 10.1016/j.rser.2017.10.002

Simen Edsjø Kalnæs, 2015, Phase change materials and products for building applications: a state-of-the-art review and future research opportunities, Energy Build., 94, 150, 10.1016/j.enbuild.2015.02.023

Yu, 2014, Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 120, 549, 10.1016/j.solmat.2013.09.037

Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031

Motahar, 2014, Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles, Int. Commun. Heat Mass Transf., 59, 68, 10.1016/j.icheatmasstransfer.2014.10.016

Sobolčiak, 2016, Heat transfer performance of paraffin wax based phase change materials applicable in building industry, Appl. Therm. Eng., 107, 1313, 10.1016/j.applthermaleng.2016.07.050

Nabil, 2013, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials, Int. J. Heat Mass Transf., 67, 301, 10.1016/j.ijheatmasstransfer.2013.08.010

Zeng, 2014, Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 127, 122, 10.1016/j.solmat.2014.04.015

Mei, 2011, Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 2772, 10.1016/j.solmat.2011.05.024

Peng, 2011, Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: experimental measurement, Int. J. Refrig., 34, 1833, 10.1016/j.ijrefrig.2011.07.009

Al Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int. J. Heat Mass Transf., 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059

Sciacovelli, 2013, Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement, Int. J. Energy Res., 37, 1610, 10.1002/er.2974

Adil, 2014, Numerical prediction of heat transfer characteristics of nanofluids in a minichannel flow, J. Energy, 7

Oya, 2013, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles, Appl. Therm. Eng., 61, 825, 10.1016/j.applthermaleng.2012.05.033

Xiang, 2010, Thermal conductivity of exfoliated graphite nanoplatelet paper, Carbon, 49, 773, 10.1016/j.carbon.2010.10.003

Liu, 2016, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 62, 305, 10.1016/j.rser.2016.04.057

Park, 2014, Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement, J. Ind. Eng. Chem., 20, 1911, 10.1016/j.jiec.2013.09.011

Sari, 2008, Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage, Energy Sources, Part A Recovery, Util. Environ. Eff., 30, 464, 10.1080/15567030601003700

Wi, 2017, Evaluation of energy e ffi cient hybrid hollow plaster panel using phase change material/xGnP composites, Appl. Energy, 1

Kim, 2016, Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials, Int. J. Heat Mass Transf., 95, 735, 10.1016/j.ijheatmasstransfer.2015.12.049

Putra, 2017, Characterization of the thermal stability of RT 22 HC/graphene using a thermal cycle method based on thermoelectric methods, Appl. Therm. Eng., 124, 62, 10.1016/j.applthermaleng.2017.06.009

Liu, 2016, Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management, J. Mater. Chem. A., 4, 18134, 10.1039/C6TA08850C

Zhou, 2011, Experimental investigations on heat transfer in phase change materials ( PCMs ) embedded in porous materials, Appl. Therm. Eng., 31, 970, 10.1016/j.applthermaleng.2010.11.022

Li, 2014, Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences, Meas. Sci. Technol., 25

Yang, 2016, Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability, J. Mater. Chem. A., 4, 18067, 10.1039/C6TA07869A

Kim, 2014, Thermal performance enhancement of mortar mixed with octadecane/xGnP SSPCM to save building energy consumption, Sol. Energy Mater. Sol. Cells, 122, 257, 10.1016/j.solmat.2013.12.015

Parameshwaran, 2013, Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles, J. Therm. Anal. Calorim., 114, 845, 10.1007/s10973-013-3064-9

Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim. Acta, 647, 15, 10.1016/j.tca.2016.11.010

Fang, 2013, Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets, Energy Fuels, 27, 4041, 10.1021/ef400702a

Sushobhan, 2017, Thermal modeling of melting of nano based phase change material for improvement of thermal energy storage, Energy Procedia, 109, 385, 10.1016/j.egypro.2017.03.035

Zeng, 2013, An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity, Int. J. Heat Mass Transf., 66, 111, 10.1016/j.ijheatmasstransfer.2013.07.022

Shaikh, 2008, Carbon nanoadditives to enhance latent energy storage of phase change materials, J. Appl. Phys., 103, 10.1063/1.2903538

Fan, 2017, Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials, Int. J. Heat Mass Transf., 95, 1057, 10.1016/j.ijheatmasstransfer.2016.01.013

Xia, 2017, Synthesis of three-dimensional graphene aerogel encapsulating n-octadecane for enhancing phase-change behavior and thermal conductivity, J. Mater. Chem. A., 00, 1

Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018

Wang, 2017, Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage, Appl. Energy, 188, 97, 10.1016/j.apenergy.2016.11.122

Chen, 2018, Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting, Nano Energy, 49, 86, 10.1016/j.nanoen.2018.03.075

Jeong, 2013, Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 117, 87, 10.1016/j.solmat.2013.05.038

Li, 2010, Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials, Appl. Phys. Mater. Sci. Process, 100, 1143, 10.1007/s00339-010-5724-y

He, 2016, Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar, Energy Build., 133, 547, 10.1016/j.enbuild.2016.10.016

Ke, 2016, Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver, J. Therm. Anal. Calorim., 123, 1293, 10.1007/s10973-015-5025-y

Wi, 2015, Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings, Sol. Energy Mater. Sol. Cells, 143, 168, 10.1016/j.solmat.2015.06.040

Jeong, 2015, Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 139, 65, 10.1016/j.solmat.2015.03.010

Ke, 2017, Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes, J. Therm. Anal. Calorim., 129, 1533, 10.1007/s10973-017-6399-9

Wei, 2017, Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 166, 1, 10.1016/j.solmat.2017.03.003

Karaipekli, 2017, Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers. Manag., 134, 373, 10.1016/j.enconman.2016.12.053

Wang, 2017, Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat, J. Mater. Chem., 5, 24321, 10.1039/C7TA05594C

Meng, 2013, Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials, J. Therm. Anal. Calorim., 111, 377, 10.1007/s10973-012-2349-8

Tang, 2015, Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage, Energy Build., 109, 353, 10.1016/j.enbuild.2015.09.074

Wu, 2015, Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage, Energy Convers. Manag., 101, 164, 10.1016/j.enconman.2015.05.006

Sari, 2008, Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage, Mater. Chem. Phys., 109, 459, 10.1016/j.matchemphys.2007.12.016

Fang, 2015, Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control, Energy Convers. Manag., 103, 251, 10.1016/j.enconman.2015.06.062

Xue, 2004, Effect of liquid layering at the liquid-solid interface on thermal transport, Int. J. Heat Mass Transf., 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016

Babaei, 2013, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene, Int. J. Heat Mass Transf., 58, 209, 10.1016/j.ijheatmasstransfer.2012.11.013

Fan, 2012, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM), Int. J. Therm. Sci., 62, 120, 10.1016/j.ijthermalsci.2011.11.005

Das, 2017, Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system, Appl. Therm. Eng., 125, 880, 10.1016/j.applthermaleng.2017.07.084

Srinivasan, 2017, Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n -eicosane, Int. J. Heat Mass Transf., 114, 318, 10.1016/j.ijheatmasstransfer.2017.06.081

Maxwell, 1881, 1

Li, 2017, Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: a molecular dynamics study, Materials, 10

Kant, 2017, Heat transfer study of phase change materials with graphene nano particle for thermal energy storage, Sol. Energy, 146, 453, 10.1016/j.solener.2017.03.013

Nan, 2004, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549, 10.1063/1.1808874

Nan, 1997, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 6692, 10.1063/1.365209

Yu, 2004, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model, J. Nanoparticle Res., 6, 355, 10.1007/s11051-004-2601-7

Temirel, 2017, Solidification of additive-enhanced phase change materials in spherical enclosures with convective cooling, Appl. Therm. Eng., 111, 134, 10.1016/j.applthermaleng.2016.09.090

Mesalhy, 2005, Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix, Energy Convers. Manag., 46, 847, 10.1016/j.enconman.2004.06.010

Wang, 2016, Heat transfer enhancement of phase change composite material: copper foam/paraffin, Renew. Energy, 96, 960, 10.1016/j.renene.2016.04.039

Koo, 2004, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 6, 577, 10.1007/s11051-004-3170-5

Arasu, 2012, Numerical study on melting of paraffin wax with Al 2O 3 in a square enclosure, Int. Commun. Heat Mass Transf., 39, 8, 10.1016/j.icheatmasstransfer.2011.09.013

Valan Arasu, 2011, Thermal performance enhancement of paraffin wax with AL 2O 3 and CuO nanoparticles - a numerical study, Front. Heat Mass Transf., 2, 1

Sheikholeslami, 2018, Finite element method for PCM solidification in existence of CuO nanoparticles, J. Mol. Liq., 265, 347, 10.1016/j.molliq.2018.05.132

Sheikholeslami, 2018, Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM, J. Taiwan Instit. Chem. Eng., 86, 25, 10.1016/j.jtice.2018.03.013

Sheikholeslami, 2018, Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles, J. Mol. Liq., 263, 303, 10.1016/j.molliq.2018.04.144

Sheikholeslami Kandelousi, 2014, KKL correlation for simulation of nanofluid flow and heat transfer inapermeable channel, Phys. Lett., Section A: General, Atom. Solid State Phys., 378, 3331, 10.1016/j.physleta.2014.09.046

Parker, 1961, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys., 32, 1679, 10.1063/1.1728417

Lamas, 2013

Brown, 2011, XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag., 4, 161

Einstein, 1905, Investigations o n the theory ,the brownian movement, Ann. Phys., 17, 549, 10.1002/andp.19053220806

Derjaguin, 1993, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci., 43, 30, 10.1016/0079-6816(93)90013-L

Verwey, 1955, Theory of the stability of lyophobic colloids, J. Colloid Sci., 10, 224, 10.1016/0095-8522(55)90030-1

Li, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

Vajjha, 2010, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow, 10.1016/j.ijheatfluidflow.2010.02.016

Abdollahzadeh, 2014, Effects of Brownian motion on freezing of PCM containing nanoparticles, Therm. Sci., 20, 1533, 10.2298/TSCI140413094A

Tyndall, 1870, On haze and dust, Nature, 1, 339, 10.1038/001339a0

Michaelides, 2015, Brownian movement and thermophoresis of nanoparticles in liquids, Int. J. Heat Mass Transf., 81, 179, 10.1016/j.ijheatmasstransfer.2014.10.019

Balberg, 1984, vol. 30, 3933

Ghadimi, 2011, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf., 54, 4051, 10.1016/j.ijheatmasstransfer.2011.04.014

Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transf., 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017

Ramakrishnan, 2017, Heat transfer performance enhancement of paraffin/expanded perlite phase change composites with graphene nano-platelets, Energy Procedia, 105, 4866, 10.1016/j.egypro.2017.03.964

Tabassum, 2015, Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate, J. Materiom., 1, 229, 10.1016/j.jmat.2015.07.002

Harish, 2017, Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions, Appl. Therm. Eng., 114, 1240, 10.1016/j.applthermaleng.2016.10.109

Zhang, 2013, Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material, Renew. Energy, 50, 670, 10.1016/j.renene.2012.08.024