A comprehensive, consistent and systematic mathematical model of PEM fuel cells

Applied Energy - Tập 86 - Trang 181-193 - 2009
J.J. Baschuk1, Xianguo Li1
1University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1

Tài liệu tham khảo

US Department of Energy. Hydrogen, fuel cells & infrastructure technologies program: multi-year research, development and demonstration plan; 2005. Warshay M, Prokopius P, Le M, Voecks G. The NASA fuel cell upgrade program for the space shuttle orbiter. In: Proceedings of the intersociety energy conversion engineering conference; 1997. p. 228–31. Ballard Power Systems. Ballard fuel cell power module 902 specification sheet, <http://www.ballard.com/be_a_customer/spec_sheets> [accessed 30.08.06]. Wang, 2004, Fundamental models for fuel cell engineering, Chem Rev, 104, 4727, 10.1021/cr020718s Bernadi, 1992, A mathematical model of the solid–polymer–electrolyte fuel cell, J Electrochem Soc, 139, 2477, 10.1149/1.2221251 Springer, 1991, Polymer electrolyte fuel cell model, J Electrochem Soc, 138, 2334, 10.1149/1.2085971 Weisbrod K, Grot S, Vanderborgh N. Through-the-electrode model of a proton exchange membrane fuel cell. In: Proceedings of the first international symposium on proton conduction membrane fuel cells, vol. I; 1995. p. 153–66. Gloaguen, 1997, Simulations of PEFC cathodes: an effectiveness factor approach, J Appl Electrochem, 27, 1029, 10.1023/A:1018478324564 Marr, 1998, An engineering model of proton exchange membrane fuel cell performance, ARI, 50, 190, 10.1007/s007770050014 Baschuk, 2000, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, J Power Sources, 86, 181, 10.1016/S0378-7753(99)00426-7 Pisani, 2002, A working model of polymer electrolyte fuel cells: comparisons between theory and experiments, J Electrochem Soc, 149, A898, 10.1149/1.1483864 Chu, 2003, Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell, J Power Sources, 123, 1, 10.1016/S0378-7753(02)00605-5 Wang, 1992, Simulation studies on the fuel electrode of a H2–O2 polymer electrolyte fuel cell, Electrochim Acta, 37, 2737, 10.1016/0013-4686(92)85201-U Springer, 1997, Modeling of polymer electrolyte fuel cell performance with reformate feed streams: effect of low levels of CO in hydrogen, vol. IV, 2334 Chan, 2003, A mathematical model of polymer electrolyte fuel cell with anode CO kinetics, Electrochim Acta, 48, 1905, 10.1016/S0013-4686(03)00269-X Baschuk, 2003, Mathematical model of a PEM fuel cell incorporating CO poisoning and O2 (air) bleeding, Int J Global Energy Issues, 20, 245, 10.1504/IJGEI.2003.003966 Janssen, 2004, Modelling study of CO2 poisoning on PEMFC anodes, J Power Sources, 138, 45, 10.1016/j.jpowsour.2004.05.004 Bevers, 1997, Simulation of a polymer electrolyte fuel cell electrode, J Appl Electrochem, 27, 1254, 10.1023/A:1018488021355 Rowe, 2001, Mathematical modeling of proton exchange membrane fuel cells, J Power Sources, 102, 82, 10.1016/S0378-7753(01)00798-4 Fuller, 1993, Water and thermal management in solid-polymer-electrolyte fuel cells, J Electrochem Soc, 140, 1218, 10.1149/1.2220960 Newman, 1991 Nguyen, 1993, A water and heat management model for proton-exchange-membrane fuel cells, J Electrochem Soc, 140, 2178, 10.1149/1.2220792 Thirumalai, 1997, Mathematical modeling of proton-exchange-membrane-fuel-cell stacks, J Electrochem Soc, 144, 1717, 10.1149/1.1837667 Yi, 1998, An along-the-channel model for proton exchange membrane fuel cells, J Electrochem Soc, 145, 1149, 10.1149/1.1838431 Natarajan, 2001, A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using convectional gas distributor, J Electrochem Soc, 148, A1324, 10.1149/1.1415032 Natarajan, 2003, Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell, J Power Sources, 115, 66, 10.1016/S0378-7753(02)00624-9 Inoue, 2006, Evaluation of the thickness of membrane and gas diffusion layer with simplified two-dimensional reaction and flow analysis of polymer electrolyte fuel cell, J Power Sources, 154, 8, 10.1016/j.jpowsour.2005.03.218 Singh, 1999, A two-dimensional analysis of mass transport in proton exchange membrane fuel cells, Int J Eng Sci, 37, 431, 10.1016/S0020-7225(98)00079-2 Kazim, 1999, Modelling of performance of PEM fuel cells with convectional and interdigitated flow fields, J Appl Electrochem, 29, 1409, 10.1023/A:1003867012551 Bradean, 2002, Transport phenomena in the porous cathode of a proton exchange membrane fuel cell, Numer Heat Transfer A: Appl, 42, 121, 10.1080/10407780290059468 He, 2000, Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChE J, 46, 2053, 10.1002/aic.690461016 Kurgan E, Schmidt P. Mathematical model of gas transport in anisotropic porous electrode of the PEM fuel cell. ICCS 2004, Krakow, Poland; June 6–9, 2004. Seddiq, 2006, Numerical analysis of gas cross-over through the membrane in a proton exchange membrane fuel cell, J Power Sources, 161, 371, 10.1016/j.jpowsour.2006.04.074 Martinez M, Shimpalee S, Van Zee J. Comparison of Maxwell–Stefan and CFD approximation equations for PEMFC applications. Proton exchange membrane fuel cells, vol. V. Los Angeles, USA: The Electrochemical Society; October 16–21, 2005. Shimpalee, 2006, Predicting the transient response of a serpentine flow-field PEMFC I: excess to normal fuel and air, J Power Sources, 156, 355, 10.1016/j.jpowsour.2005.05.073 Shimpalee, 1999, Effect of humidity on PEM fuel cell performance part II. Numerical simulation, Am Soc Mech Eng, Heat Transfer Div, 364, 367 Shimpalee, 2000, Numerical prediction of local temperature and current density in a PEM fuel cell, Am Soc Mech Eng, Heat Transfer Div, 366, 1 Berning, 2002, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell, J Power Sources, 106, 284, 10.1016/S0378-7753(01)01057-6 Kulikovsky, 2004, Quasi-3D modeling of water transport in polymer electrolyte fuel cells, J Electrochem Soc, 150, A1432, 10.1149/1.1611489 Liu, 2006, A two dimensional partial flooding model for PEMFC, J Power Sources, 158, 1229, 10.1016/j.jpowsour.2005.10.060 Gurau, 1998, Two-dimensional model for proton exchange membrane fuel cells, AIChE J, 44, 2410, 10.1002/aic.690441109 Um, 2000, Computational fluid dynamics modeling of proton exchange membrane fuel cells, J Electrochem Soc, 147, 4485, 10.1149/1.1394090 Wang, 2007, Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells, Electrochim Acta, 52, 3965, 10.1016/j.electacta.2006.11.012 Wang, 1999, Two-phase transport in proton exchange membrane fuel cells, Am Soc Mech Eng, Heat Transfer Div, 364, 351 Um, 2006, Computational study of water transport in proton exchange membrane fuel cells, J Power Sources, 156, 211, 10.1016/j.jpowsour.2005.05.095 Siegel, 2003, Single domain PEMFC model based on agglomerate catalyst geometry, J Power Sources, 156, 334 Gurau V, Zawodzinski T, Mann J. Numerical investigation of water transport in the PEMFC components. Proton exchange membrane fuel cells, vol. 6. Cancun, Mexico: The Electrochemical Society; October 29–November 3, 2006. Meng, 2005, Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells, J Electrochem Soc, 152, A1733, 10.1149/1.1955007 Coppo, 2006, On the influence of temperature on PEM fuel cell operation, J Power Sources, 159, 560, 10.1016/j.jpowsour.2005.09.069 He, 2007, A two-fluid model for two-phase flow in PEMFCs, J Power Sources, 163, 864, 10.1016/j.jpowsour.2006.09.059 Scattergood, 1968, Diffusional interaction in an ion-exchange membrane, Trans Faraday Soc, 64, 1135, 10.1039/tf9686401135 Baschuk, 2005, A general formulation for a mathematical PEM fuel cell model, J Power Sources, 142, 134, 10.1016/j.jpowsour.2004.09.027 Sutton K, Gnoffo P. Multi-component diffusion with application to computational aerothermodynamics. In: Seventh AIAA/ASME joint thermophysics and heat transfer conference (AIAA 98-2575), Albuquerque, USA; June 15–18, 1998. Vafai, 1990, Fluid mechanics of the interface region between a porous medium and a fluid layer. An exact solution, Int J Heat Fluid Flow, 11, 254, 10.1016/0142-727X(90)90045-D Meng, 2004, Electron transport in polymer electrolyte fuel cells, J Electrochem Soc, 151, A358, 10.1149/1.1641036 Janssen, 2004, A phenomenological model of water transport in a proton exchange membrane fuel cell, J Electrochem Soc, 151, A1313 Weber, 2004, Transport in polymer-electrolyte membranes, J Electrochem Soc, 151, A311, 10.1149/1.1639157 Fimrite, 2005, Transport phenomena in polymer electrolyte membranes I. Binary friction membrane model, J Electrochem Soc, 152, A1804, 10.1149/1.1952627 Thampan, 2000, Modeling of conductive transport in proton-exchange membranes for fuel cells, J Electrochem Soc, 147, 3242, 10.1149/1.1393890 Futerko, 1999, Thermodynamics of water vapor uptake in perfluorosulfonic acid membranes, J Electrochem Soc, 146, 2049, 10.1149/1.1391890 Motupally, 2000, Diffusion of water in Nafion 115 membranes, J Electrochem Soc, 147, 3171, 10.1149/1.1393879 Sone, 1996, Proton conductivity of Nafion 117 as measured by a four electrode ac impedance method, J Electrochem Soc, 143, 1254, 10.1149/1.1836625 Vetter, 1967 Parthasarathy, 1992, Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface – a microelectrode investigation, J Electrochem Soc, 139, 2530, 10.1149/1.2221258 Ferziger, 1999 Mughal, 2006, Experimental diagnostics of PEM fuel cells, Int J Environ Stud, 63, 377, 10.1080/00207230600800670