A comprehensive comparison of molecular feature representations for use in predictive modeling
Tài liệu tham khảo
1984
2018, Semi-supervised trees for multi-target regression, Inf. Sci., 450, 109, 10.1016/j.ins.2018.03.033
Altae-Tran, 2017, Low data drug discovery with one-shot learning, ACS Cent. Sci., 3, 283, 10.1021/acscentsci.6b00367
Bento, 2014, The chembl bioactivity database: an update, Nucleic Acids Res., 42, D1083, 10.1093/nar/gkt1031
Bleiziffer, 2018, Machine learning of partial charges derived from high-quality quantum-mechanical calculations, J. Chem. Inf. Model., 58, 579, 10.1021/acs.jcim.7b00663
Coley, 2017, Convolutional embedding of attributed molecular graphs for physical property prediction, J. Chem. Inf. Model., 57, 1757, 10.1021/acs.jcim.6b00601
Delaney, 2004, Esol: estimating aqueous solubility directly from molecular structure, J. Chem. Inf. Comput. Sci., 44, 1000, 10.1021/ci034243x
Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1
Duan, 2010, Analysis and comparison of 2d fingerprints: insights into database screening performance using eight fingerprint methods, J. Mol. Graph. Model., 29, 157, 10.1016/j.jmgm.2010.05.008
Duvenaud, 2015, Convolutional networks on graphs for learning molecular fingerprints, vol. 28, 2224
Editorial, 2019, Dark chemistry: ultra-large libraries of virtual molecules help researchers to explore the chemical universe and point to potential drugs, Nature, 566, 7
Ellis, 2006, The university of Minnesota biocatalysis/biodegradation database: the first decade, Nucleic Acids Res., 34, D517, 10.1093/nar/gkj076
Gindulyte, 2018, PubChem 2019 update: improved access to chemical data, Nucleic Acids Res., 47, D1102
Gladysz, 2018, Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening, J. Cheminf., 10, 9, 10.1186/s13321-018-0268-9
Hansen, 2009, Benchmark data set for in silico prediction of ames mutagenicity, J. Chem. Inf. Model., 49, 2077, 10.1021/ci900161g
Hu, 2012, Performance evaluation of 2d fingerprint and 3d shape similarity methods in virtual screening, J. Chem. Inf. Model., 52, 1103, 10.1021/ci300030u
Hunt, 2018, Whichp450: a multi-class categorical model to predict the major metabolising cyp450 isoform for a compound, J. Comput. Aided Mol. Des., 32, 537, 10.1007/s10822-018-0107-0
Jaeger, 2018, Mol2vec: unsupervised machine learning approach with chemical intuition, J. Chem. Inf. Model., 58, 27, 10.1021/acs.jcim.7b00616
Kearnes, 2016, Molecular graph convolutions: moving beyond fingerprints, J. Comput. Aided Mol. Des., 30, 595, 10.1007/s10822-016-9938-8
Kocev, 2013, Tree ensembles for predicting structured outputs, Pattern Recogn., 46, 817, 10.1016/j.patcog.2012.09.023
Kong, 2018, Identification of novel aurora kinase a (aurka) inhibitors via hierarchical ligand-based virtual screening, J. Chem. Inf. Model., 58, 36, 10.1021/acs.jcim.7b00300
Kuhn, 2016, The sider database of drugs and side effects, Nucleic Acids Res., 44, D1075, 10.1093/nar/gkv1075
Lang
Lapins, 2018, A confidence predictor for logd using conformal regression and a support-vector machine, J. Cheminf., 10, 17, 10.1186/s13321-018-0271-1
Levatić, 2017, Semi-supervised classification trees, J. Intell. Inf. Syst., 49, 461, 10.1007/s10844-017-0457-4
Lo, 2018, Machine learning in chemoinformatics and drug discovery, Drug Discov. Today, 23, 1538, 10.1016/j.drudis.2018.05.010
Lusci, 2013, Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules, J. Chem. Inf. Model., 53, 1563, 10.1021/ci400187y
Martins, 2012, A bayesian approach to in silico blood-brain barrier penetration modeling, J. Chem. Inf. Model., 52, 1686, 10.1021/ci300124c
Mobley, 2018
O'Boyle, 2016, Comparing structural fingerprints using a literature-based similarity benchmark, J. Cheminf., 8, 36, 10.1186/s13321-016-0148-0
Petković, 2019, Feature ranking for multi-target regression, Mach. Learning J. Online First, 1
Qureshi, 2018
Riniker, 2013, Open-source platform to benchmark fingerprints for ligand-based virtual screening, J. Cheminf., 5, 26, 10.1186/1758-2946-5-26
Rogers, 2010, Extended-connectivity fingerprints, J. Chem. Inf. Model., 50, 742, 10.1021/ci100050t
Rohrer, 2009, Maximum unbiased validation (muv) data sets for virtual screening based on pubchem bioactivity data, J. Chem. Inf. Model., 49, 169, 10.1021/ci8002649
Sterling, 2015, Zinc 15 âĂŞ ligand discovery for everyone, J. Chem. Inf. Model., 55, 2324, 10.1021/acs.jcim.5b00559
Subramanian, 2016, Computational modeling of beta-secretase 1 (bace-1) inhibitors using ligand based approaches, J. Chem. Inf. Model., 56, 1936, 10.1021/acs.jcim.6b00290
Todeschini, 2009, vol. 41
Walters, 2019, Virtual chemical libraries, J. Med. Chem., 62, 1116, 10.1021/acs.jmedchem.8b01048
Wei, 2011, Padel-descriptor: an open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem., 32, 1466, 10.1002/jcc.21707
Wicker, J., Fenner, K., Ellis, L., Wackett, L., Kramer, S., . Predicting Biodegradation Products and Pathways: a Hybrid Knowledge- and Machine Learning-Based Approach .
Winter, 2019, Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations, Chem. Sci., 10, 1692, 10.1039/C8SC04175J
Wu, 2017
Zhang, 2018, In-silico guided discovery of novel ccr9 antagonists, J. Comput. Aided Mol. Des., 32, 573, 10.1007/s10822-018-0113-2
Zoffmann, 2019, Machine learning-powered antibiotics phenotypic drug discovery, Sci. Rep., 9, 5013, 10.1038/s41598-019-39387-9