Một phương pháp toàn diện để đánh giá kinh tế - kỹ thuật của việc khai thác hạt ở đại dương sâu

Sebastian Ernst Volkmann1, Thomas Kuhn2, Felix Lehnen1
1Institute of Mineral Resources Engineering (MRE), RWTH Aachen University, Aachen, Germany
2Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany

Tóm tắt

Kế hoạch khai thác các mỏ khoáng sản trên đất liền tuân theo những phương pháp đã được thiết lập từ lâu. Trong khi đó, đại dương sâu hiện đang trong quá trình thăm dò, nhưng các phương pháp lập kế hoạch khai thác vẫn còn thiếu. Bài báo này đề xuất một công cụ lập kế hoạch không gian để đánh giá các yêu cầu và tác động về kinh tế - kỹ thuật của việc khai thác hạt mangan trên các mỏ khoáng sản đại dương sâu. Phương pháp toàn diện này đã được xác thực bằng cách sử dụng những phát hiện nghiên cứu của dự án Blue Mining, nhận được tài trợ từ Ủy ban Châu Âu. Một phần của khu vực thăm dò Đức E1, nằm trong Khu vực Đứt gãy Clarion-Clipperton, Thái Bình Dương, được chọn làm khu vực nghiên cứu điển hình. Phương pháp này góp phần vào việc sử dụng có trách nhiệm các nguồn tài nguyên khoáng sản dưới đáy biển, xem xét các khía cạnh địa chất, kinh tế, tài chính cũng như kỹ thuật và hoạt động. Phương pháp này cũng có thể được áp dụng cho việc đánh giá giai đoạn đầu của các dự án khác liên quan đến các nguồn tài nguyên khoáng sản phân bố theo không gian, chẳng hạn như nodule photphat biển. Hơn nữa, nó cũng có thể hữu ích cho việc điều tra tác động môi trường của việc khai thác hạt mangan dưới đáy biển.

Từ khóa

#khai thác khoáng sản #đại dương sâu #phương pháp lập kế hoạch không gian #nodule mangan #tác động môi trường

Tài liệu tham khảo

Abramowski T (2016) Deep sea mining value chain: organization, technology and development. Interoceanmetal Joint Organization, Szczecin Agarwal B, Hu P, Placidi M, Santo H, Zhou JJ 2012 Feasibility study on manganese nodules: recovery in the Clarion-Clipperton Zone. https://pdfs.semanticscholar.org/687e/b9658dd10fb5c276aa591bd44f15d012f746.pdf Ardron J, Gjerde K, Pullen S, Tilot V (2008) Marine spatial planning in the high seas. Mar Policy 32(5):832–839. https://doi.org/10.1016/j.marpol.2008.03.018 Atmanand MA (2011) Status of India’s polymetallic nodule mining Programme. In: Chung JS (ed) Proceedings of the twenty-first (2011) international offshore and polar engineering conference. ISOPE, Cupertino BMWi 2016 Analysis of the Economic Benefits of Developing Commercial Deep Sea Mining Operations in Regions where Germany has Exploration Licenses of the International Seabed Authority, as well as Compilation and Evaluation of Implementation Options with a Focus on the Perfomance of Pilot Mining Test. With the assistance of Ramboll IMS and HWWI. Hamburg. Federal Ministry for Economic Affairs and Energy Division I C 4, Project No. 59/15 Doerfler R (2009) On jargon-the lost art of nomography. UMAP J 30(4):457 Durden JM, Murphy K, Jaeckel A, van Dover CL, Christiansen S, Gjerde K, Ortega A, Jones DOB (2017) A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model. Mar Policy 84:193–201. https://doi.org/10.1016/j.marpol.2017.07.002 ECORYS 2014 Study to investigate state of knowledge of deep-sea mining: Final Report under FWC MARE/2012/06 - SC E1/2013/04.” Accessed 26 Nov 2016. https://webgate.ec.europa.eu/maritimeforum/en/node/3732 Ehler C (2008) Conclusions: benefits, lessons learned, and future challenges of marine spatial planning. Mar Policy 32(5):840–843. https://doi.org/10.1016/j.marpol.2008.03.014 Ehler C, Douvere F 2009 Marine spatial planning, a step-by-step approach toward ecosystem-based management. IOC Manuals and Guides 53 Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science (New York, NY) 309(5734):570–574. https://doi.org/10.1126/science.1111772. Gertsch R, Gertsch L 2005 Economic analysis tools for mineral projects in space. Space Resources Roundtable, http://www.mines.edu/research/srr/rgertsch.pdf. Last viewed Sep 21: 3–11 Handschuh R, Schulte E, Grebe H, Schwarz W (2003) Economic simulations for a small scale manganese nodule mining system taking into account new technologies. In: Proceedings of The Fifth Ocean Mining Symposium, edited by The International Society of Offshore and Polar Engineers, 71. International Society of Offshore and Polar Engineers (ISOPE), Tsukuba, 15–19 Sept 2003 Hein JR, Koschinsky A (2014) Deep-ocean ferromanganese crusts and nodules. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 273–291. https://doi.org/10.1016/B978-0-08-095975-7.01111-6 Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14. https://doi.org/10.1016/j.oregeorev.2012.12.001 Hoagland P (1993) Manganese nodule price trends. Resour Policy 19(4):287–298. https://doi.org/10.1016/0301-4207(93)90041-K ISA (ed) 2008 Polymetallic nodule mining technology: current status and challenges ahead. Proceedings of a workshop held by the International Seabed Authority in Chennai, India February 18-22, 2008. http://www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf ISA (ed) (2010) A geological model of polymetallic nodule deposits in the Clarion Clipperton fracture zone. Technical study 6. International Seabed Authority, Kingston ISA 2017a Ongoing development of regulations on exploitation of mineral resources in the area. Accessed 30 Nov 2017. https://www.isa.org.jm/legal-instruments/ongoing-development-regulations-exploitation-mineral-resources-area ISA 2017b Report of the Chair of the Legal and Technical Commission on the work of the Commission at its session in 2017. ISBA/23/C/13. https://www.isa.org.jm/sites/default/files/files/documents/isba-23c-13_5.pdf Jaeckel A, Gjerde KM, Ardron JA (2017) Conserving the common heritage of humankind—options for the deep-seabed mining regime. Mar Policy 78:150–157. https://doi.org/10.1016/j.marpol.2017.01.019 Jenisch U (2013) Tiefseebergbau–Lizenzvergabe und Umweltschutz. NuR 35(12):841–854. https://doi.org/10.1007/s10357-013-2554-7 Johnson CJ, Otto JM (1986) Manganese nodule project economics: factors relating to the Pacific region. Resour Policy 12(1):17–28. https://doi.org/10.1016/0301-4207(86)90045-0. Knobloch A, Kuhn T, Rühlemann C, Hertwig T, Zeissler K-O, Noack S (2017) Predictive mapping of the nodule abundance and mineral resource estimation in the Clarion-Clipperton Zone using artificial neural networks and classical geostatistical methods. In: Sharma R (ed) Deep-Sea Mining. Springer, Cham Knodt S, Kleinen T, Dornieden C, Lorscheidt J, Bjørneklett B, Mitzlaff A 2016 Development and engineering of offshore mining systems—state of the art and future perspectives. Offshore Technology Conference, Houston Kuhn T, Rühlemann C, Wiedicke-Hombach M, Rutkowsky J, Wirth HJ, Koenig D, Kleinen T, Mathy T (2011) Tiefseeförderung von Manganknollen. Schiff & Hafen (5):78–83 Kuhn T, Wegorzewski A, Rühlemann C, Vink A 2017 Composition, formation, and occurrence of polymetallic nodules. In: Sharma R (2017) Deep-sea mining: resource potential, technical and environmental considerations. Springer International Publishing, Cham. pp 23–63. https://doi.org/10.1007/978-3-319-52557-0 Lodge M, Johnson D, Le Gurun G, Wengler M, Weaver P, Gunn V (2014) Seabed mining: international seabed authority environmental management plan for the Clarion–Clipperton zone. A partnership approach. Mar Policy 49:66–72. https://doi.org/10.1016/j.marpol.2014.04.006 Martino S, Parson LM (2013) Spillovers between cobalt, copper and nickel prices: implications for deep seabed mining. Miner Econ 25(2–3):107–127. https://doi.org/10.1007/s13563-012-0027-8 Marvasti A (1998) An assessment of the international technology transfer systems and the new law of the sea. Ocean Coast Manag 39(3):197–210. https://doi.org/10.1016/S0964-5691(98)00025-8 Marvasti A (2000) Resource characteristics, extraction costs, and optimal exploitation of mineral resources. Environ Resour Econ 17(4):395–408. https://doi.org/10.1023/A:1026566931709 Melcher PR (1989) Konzeption eines Fördersystems zum Abbau von Manganknollen. Forsch Ingenieurwesen 55(1):16–31. https://doi.org/10.1007/BF02559012 Mengerink KJ, van Dover CL, Ardron J, Baker M, Escobar-Briones E, Gjerde K, Koslow JA et al (2014) A call for deep-ocean stewardship. Science (New York, NY) 344(6185):696–698. https://doi.org/10.1126/science.1251458. Mero JL (1962) Ocean-floor manganese nodules. Econ Geol 57(5):747–767. https://doi.org/10.2113/gsecongeo.57.5.747 MIDAS 2016a Implications of MIDAS results for policy makers: recommendations for future regulations.” Accessed 13 Dec 2017. http://www.eu-midas.net/sites/default/files/downloads/MIDAS_recommendations_for_policy_lowres.pdf MIDAS 2016b Managing impacts of deep sea resource exploitation: research highlights. Accessed 13 Dec 2016. http://www.eu-midas.net/sites/default/files/downloads/MIDAS_research_highlights_low_res.pdf Mucha J, Wasilewska-Blaszczyk M 2013 The Contouring accuracy of polymetallic nodules ore fields in the Interoceanmetal (IOM) Area, East Pacific Ocean. In Proceedings of the Tenth (2013) ISOPE Ocean Mining and Gas Hydrates Symposium: Deep ocean minerals, exploration, mining, gas hydrates and environment, edited by J. S. Chung. Cupertino, Calif Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009 Petersen S, Krätschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed—geological characteristics and resource potential of deep-sea mineral resources. Mar Policy 70:175–187. https://doi.org/10.1016/j.marpol.2016.03.012 Preuße A, Beckers D, Charlier F, Müller D, PapstM, Preuße L (2016) 16th International Congress for mine surveying, Brisbane, 12–16 Sept 2016 Rühlemann C, Kuhn T, Wiedicke-Hombach M, Kasten S, Mewes K, Picard A 2011 Current status of manganese nodule exploration in the German license area. In Chung, pp 168–73 Sharma R (2013) Deep-sea impact experiments and their future requirements. Mar Georesour Geotechnol 23(4):331–338. https://doi.org/10.1080/10641190500446698 Sharma R, Nath N, Parthiban G, Sankar SJ (2001) Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Res II 48(16):3363–3380. https://doi.org/10.1016/S0967-0645(01)00046-7 Sieveking GDG, Bush P, Ferguson J, Craddock PT, Hughes MJ, Cowell MR (1972) Prehistoric flint mines and their identification as sources of raw material. Archaeometry 14(2):151–176. https://doi.org/10.1111/j.1475-4754.1972.tb00061.x Søreide F, Lund T, Markussen JM (2001) Deep ocean mining reconsidered: A study of the manganese nodule deposits in Cook Island. In: The proceedings of the Fourth (2001) ISOPE Ocean Mining Symposium, edited by The International Society of Offshore and Polar Engineers (ISOPE). Cupertino, Calif SPC (2013) Deep Sea Minerals. In: Baker E, Beaudoin Y (eds) Manganese nodules, a physical, biological, environmental, and technical review, vol 1B. Secretariat of the Pacific Community SPC (2016) An assessment of the costs and benefits of mining deepsea minerals in the Pacific Island Region: deep-sea mining cost-benefit analysis. Suva, Fiji. SPC Technical Report SPC00035 Stelzenmüller V, Lee J, South A, Jo F, Rogers SI (2013) Practical tools to support marine spatial planning: a review and some prototype tools. Mar Policy 38:214–227. https://doi.org/10.1016/j.marpol.2012.05.038 Thiel H, Schriever G (1993) Environmental consequences of deep-sea mining. Int Chall 13:54–70 UNCLOS 1994 United Nations Convention on the Law of the Sea. Accessed 18 Nov 2016. http://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf UNOET (ed) (1979) Manganese nodules: dimensions and perspectives. Natural resources forum library 2. Reidel, Dordrecht UNOET (ed) (1987) Delineation of mine sites and potential in different sea areas. Seabed Minerals Series 4, vol. 9. Graham & Trotman, London USGS 2016 USGS minerals information: commodity statistics and information. Accessed 15 Sept 2017. https://minerals.usgs.gov/minerals/pubs/commodity/ Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6(1):26808. https://doi.org/10.1038/srep26808 Volkmann SE (2014) “Deliverable 3.41: sustainable indicators.” Public report submitted to the EU Commission within the 7th Framework Programme (GA No. 604500). Accessed July 26, 2016. http://www.bluemining.eu/downloads/ Volkmann SE, Lehnen F (2017) Production key figures for planning the mining of manganese nodules. Mar Georesour Geotechnol:1–16. https://doi.org/10.1080/1064119X.2017.1319448 Volkmann SE, Osterholt V 2017 Deliverable 3.42: sustainable economic models and evaluation. Public report submitted to the EU Commission within the 7th Framework Programme (GA No. 604500). http://www.bluemining.eu/downloads/ Wedding LM, Friedlander AM, Kittinger JN, Watling L, Gaines SD, Bennett M, Hardy SM, Smith CR (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc R Soc B Biol Sci 280(1773):20131684. https://doi.org/10.1098/rspb.2013.1684 Wellmer FH, Dalheimer M, Wagner M (2008) Economic evaluations in exploration. Springer, Berlin