A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room

Zeitschrift für Medizinische Physik - Tập 31 - Trang 215-228 - 2021
Franz S. Englbrecht1, Sebastian Trinkl2,3, Vladimír Mares2, Werner Rühm2, Marek Wielunski2, Jan J. Wilkens3,4, Martin Hillbrand5, Katia Parodi1
1LMU Munich, Faculty of Physics, Department of Medical Physics, Am Coulombwall 1, 85748 Garching bei München, Germany
2Helmholtz Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
3Technical University of Munich, Physics Department, James-Franck-Straße 1, 85748 Garching bei München, Germany
4Technical University of Munich, Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Ismaninger Str. 22, 81675 München, Germany
5Rinecker Proton Therapy Center, Schäftlarnstraße 133, 81371 München, Germany

Tài liệu tham khảo

Allen, 2012, An evidence based review of proton beam therapy: the report of ASTRO's emerging technology committee, Radiother Oncol, 103, 8, 10.1016/j.radonc.2012.02.001 Mohamad, 2019, Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study, Lancet Oncol, 5, 674, 10.1016/S1470-2045(18)30931-8 Newhauser, 2015, The physics of proton therapy, Phys Med Biol, 60, R155, 10.1088/0031-9155/60/8/R155 Newhauser, 2011, Assessing the risk of second malignancies after modern radiotherapy, Nat Rev Cancer, 11, 438, 10.1038/nrc3069 Hall, 2007, The impact of protons on the incidence of second malignancies in radiotherapy, Technol Cancer Res Treat, 6, 31, 10.1177/15330346070060S405 Schneider, 2016, Neutrons in proton pencil beam scanning: parametrization of energy, quality factors and RBE, Phys Med Biol, 61, 6231, 10.1088/0031-9155/61/16/6231 Ottolenghi, 2016 Hillbrand, 2009, Abdominal cancer during early childhood: a dosimetric comparison of proton beams to standard and advanced photon radiotherapy, Radiother Oncol, 89, 141, 10.1016/j.radonc.2008.06.012 Hälg, 2020, Neutron dose and its measurement in proton therapy – current state of knowledge, Br J Radiol, 93, 1107, 10.1259/bjr.20190412 Kollitz, 2020, A novel hybrid model for out-of-field dose calculation in proton therapy treatment planning, Int J Part Ther, 6, 285 Rechner, 2015, Risk-optimized proton therapy to minimize radiogenic second cancers, Phys Med Biol, 60, 3999, 10.1088/0031-9155/60/10/3999 International, 2018 Zheng, 2008, Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit, Phys Med Biol, 53, 187, 10.1088/0031-9155/53/1/013 Schneider, 2007, Proton therapy with spot scanning: the Rinecker proton therapy center in Munich, Nowotw J Oncol, 57, 524 Borchert, 2008, Proton therapy with spot scanning: the Rinecker proton therapy center in Munich. Part 2: Technical & physical aspects, Nowotw J Oncol, 58, 116 Fontenot, 2008, Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer, Phys Med Biol, 53, 1677, 10.1088/0031-9155/53/6/012 Perez-Andajar, 2009, Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system, Phys Med Biol, 54, 993, 10.1088/0031-9155/54/4/012 Schneider, 2002, Secondary neutron dose during proton therapy using spot scanning, Int J Radiat Oncol Biol Phys, 53, 244, 10.1016/S0360-3016(01)02826-7 Taddei, 2008, Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer, Phys Med Biol, 53, 2131, 10.1088/0031-9155/53/8/009 Titt, 2005, Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: criterion for selecting the method of choice, Radiat Prot Dosim, 115, 144, 10.1093/rpd/nci252 Schneider, 2017, Neutrons in active proton therapy: parameterization of dose and dose equivalent, Z Med Phys, 27, 113, 10.1016/j.zemedi.2016.07.001 Farah, 2014, Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations, Phys Med Biol, 59, 2747, 10.1088/0031-9155/59/11/2747 Cywicka-Jakiel, 2010, Individual patient shielding for a proton eye therapy facility, Radiat Meas, 45, 1127, 10.1016/j.radmeas.2010.05.018 Tayama, 2002, Benchmark calculations of neutron yields and dose equivalent from thick iron target for 52–256 MeV protons, Nucl Eng Des, 213, 119, 10.1016/S0029-5493(01)00507-6 Chen, 2013, Evaluation of neutron dose equivalent from the Mevion S250 proton accelerator: measurements and calculations, Phys Med Biol, 58, 8709, 10.1088/0031-9155/58/24/8709 Baradaran-Ghahfarokhi, 2020, A Monte Carlo-based analytic model of neutron dose equivalent for a mevion gantry-mounted passively scattered proton system for craniospinal irradiation, Med Phys, 47, 4509, 10.1002/mp.14299 Baradaran-Ghahfarokhi, 2020, A Monte Carlo based analytic model of the in-room neutron ambient dose equivalent for a Mevion gantry-mounted passively scattered proton system, J Radiol Prot, 40, 980, 10.1088/1361-6498/abaff4 Howell, 2016, Measured neutron spectra and dose equivalents from a mevion single-room, passively scattered proton system used for craniospinal irradiation, Int J Radiat Oncol Biol Phys, 95, 249, 10.1016/j.ijrobp.2015.12.356 Brenner, 2009, Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator, Phys Med Biol, 54, 6065, 10.1088/0031-9155/54/20/003 Islam, 2013, Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy, Phys Med Biol, 58, 8235, 10.1088/0031-9155/58/22/8235 Newhauser, 2002, Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center, Nucl Instrum Methods Phys Res A, 476, 80, 10.1016/S0168-9002(01)01400-0 Arjomandy, 2009, Comparison of surface doses from spot scanning and passively scattered proton therapy beams, Phys Med Biol, 54, N295, 10.1088/0031-9155/54/14/N02 Hohmann, 2011, Investigation of the neutron stray radiation field produced by irradiating a water phantom with 200-MeV protons, Nucl Technol, 175, 77, 10.13182/NT11-A12273 Mares, 2016, A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy, Phys Med Biol, 61, 4127, 10.1088/0031-9155/61/11/4127 Sayah, 2013 Goebel, 2017, Dose delivery system of the varian probeam system with continuous beam Particle, 2019 Zheng, 2009, Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault, Phys Med Biol, 54, 6943, 10.1088/0031-9155/54/22/013 Trinkl, 2017, Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy, Phys Med Biol, 44, 1912 Zheng, 2007, Monte Carlo study of neutron dose equivalent during passive scattering proton therapy, Phys Med Biol, 52, 4481, 10.1088/0031-9155/52/15/008 Battistoni, 2007, The FLUKA code: description and benchmarking Ferrari, 2005, 31 Agostinelli, 2003, Geant4-a simulation toolkit, Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip, 506, 250, 10.1016/S0168-9002(03)01368-8 Langer, 2017, Comparison of multi-institutional varian ProBeam pencil beam scanning proton beam commissioning data, Radiat Oncol Phys, 18, 96 Englbrecht, 2020, Supplemental material for: a comprehensive Monte-Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy treatment room, Zeitschrift für Medizinische Physik Online Boehlen, 2018, The FLUKA code: developments and challenges for high energy and medical applications, Nucl Data Sheets, 120, 211, 10.1016/j.nds.2014.07.049 Würl, 2016, Dosimetric impact of the low-dose envelope of scanned proton beams at a probeam facility: comparison of measurements with tps and mc calculations, Phys Med Biol, 61, 958, 10.1088/0031-9155/61/2/958 Hofmann, 2004, Use of isodose rate pictures for the shielding design of a proton therapy centre, 181 Ferrari, 1997, The physics of high energy reactions, Nucl React Data Nucl React Phys Des Saf, 1 De Smet, 2013, Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements, Radiat Prot Dosim, 161, 417 Avery, 2008, Analytical shielding calculations for a proton therapy facility, Radiat Prot Dosim, 131, 167, 10.1093/rpd/ncn136 The Geant4 Collaboration, 2015 Varian Medical Systems, Inc., 2016 Farah, 2015, Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems, Med Phys, 42, 2572, 10.1118/1.4916667 Brown, 2018, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl Data Sheets, 148, 1, 10.1016/j.nds.2018.02.001 Tami, 2020, Upright treatment could increase patient comfort, reduce proton therapy costs, Phys World Eley, 2015, Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system, Cancers (Basel), 7, 427, 10.3390/cancers7010427 Ferrari, 1997