A complete snow avalanche activity record from a Norwegian forecasting region using Sentinel-1 satellite-radar data

Cold Regions Science and Technology - Tập 144 - Trang 39-51 - 2017
M. Eckerstorfer1, E. Malnes1, K. Müller2
1Earth Observation, NORUT (Northern Research Institute), P.O. Box 6434, Tromsø Science Park, Tromsø, Norway
2Norwegian Water Resources and Energy Directorate, Oslo, Norway

Tài liệu tham khảo

Birkeland, 2001, The major snow avalanche cycle of February 1986 in the western United States, Nat. Hazards, 24, 75, 10.1023/A:1011192619039 Bühler, 2013, Automated identification of potential snow avalanche release areas based on digital elevation models, Nat. Hazards Earth Syst. Sci., 13, 1321, 10.5194/nhess-13-1321-2013 Caduff, 2016, Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow avalanches, 2016, 239 Davis, 1999, Relating storm and weather factors to dry slab avalanche activity at Alta, Utah, and Mammoth Mountain, California, using classification and regression trees, Cold Reg. Sci. Technol., 30, 79, 10.1016/S0165-232X(99)00032-4 Deems, 2013, Lidar measurement of snow depth: a review, J. Glaciol., 59, 467, 10.3189/2013JoG12J154 Eckerstorfer, 2011, Relating meteorological variables to the natural slab avalanche regime in High Arctic Svalbard, Cold Reg. Sci. Technol., 69, 184, 10.1016/j.coldregions.2011.08.008 Eckerstorfer, 2015, Manual detection of snow avalanche debris using high-resolution Radarsat-2 SAR images, Cold Reg. Sci. Technol., 120, 205, 10.1016/j.coldregions.2015.08.016 Eckerstorfer, 2016, Remote sensing of snow avalanches: recent advances, potential, and limitations, Cold Reg. Sci. Technol., 121, 126, 10.1016/j.coldregions.2015.11.001 Eineder, 2003, Efficient simulation of SAR interferograms of large areas and of rugged terrain, IEEE Trans. Geosci. Remote Sens., 41, 1415, 10.1109/TGRS.2003.811692 El Haji, 2016, Analysis of sentinel-1 radiometric stability and quality for land surface applications, Remote Sens., 8 Engeset, 2013, National avalanche warning service for Norway - established 2013, 301 Föhn, 1977, Evaluation and comparison of statistical and conventional methods of forecasting avalanche hazard, J. Glaciol., 19, 375, 10.1017/S0022143000029403 Haegeli, 2003, Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada, Cold Reg. Sci. Technol., 37, 255, 10.1016/S0165-232X(03)00069-7 Haegeli, 2007, Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada, J. Glaciol., 53, 266, 10.3189/172756507782202801 Hendrikx, 2005, Avalanche activity in an extreme maritime climate: the application of classification trees for forecasting, Cold Reg. Sci. Technol., 43, 104, 10.1016/j.coldregions.2005.05.006 Hendrikx, 2012, Time-lapse photography as an approach to understanding glide avalanche activity, 872 Hendrikx, 2014, Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska, Cold Reg. Sci. Technol., 97, 113, 10.1016/j.coldregions.2013.08.009 van Herwijnen, 2014, Monitoring snow cornice development using time-lapse photography, 865 van Herwijnen, 2011, Monitoring avalanche activity using a seismic sensor, Cold Reg. Sci. Technol., 69, 165, 10.1016/j.coldregions.2011.06.008 van Herwijnen, 2013, Using time-lapse photography in avalanche research, 950 van Herwijnen, 2016, Forecasting snow avalanches using avalanche activity data obtained through seismic monitoring, Cold Reg. Sci. Technol., 68, 10.1016/j.coldregions.2016.09.014 Larsen, 2005, A generic differential interferometric SAR processing system, with applications to land subsidence and snow-water equivalent retrieval, 6 Lu, 2003, Change detection techniques, Int. J. Remote Sens., 25, 2365, 10.1080/0143116031000139863 McClung, 2006 McCollister, 2003, Exploring multi-scale spatial patterns in historical avalanche data, Jackson Hole Mountain Resort, Wyoming, Cold Reg. Sci. Technol., 37, 299, 10.1016/S0165-232X(03)00072-7 MET Mock, 2000, Snow avalanche climatology of the western United States mountain ranges, Bull. Am. Meteorol. Soc., 81, 2367, 10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2 Nagler, 2000, Retrieval of wet snow by means of multitemporal SAR data, IEEE Trans. Geosci. Remote Sens., 38, 754, 10.1109/36.842004 OGRS, 2014 Prokop, 2008, Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Reg. Sci. Technol., 54, 155, 10.1016/j.coldregions.2008.07.002 Prokop, 2014, Monitoring avalanche activity using distributed acoustic fiber optic sensing, 129 deQuervain, 1986, 50years of snow profiles on the Weissfluhjoch and relations to the surrounding avalanche activity (1936/37–1985/86), 162, 22 Schubert, 2012, COSMO-SkyMed, TerraSAR-X, and RADARSAT-2 geolocation accuracy after compensation for earth-system effects, 3301 Schubert, 2015, Sentinel-1A product geolocation accuracy: commissioning phase results, Remote Sens., 7, 9431, 10.3390/rs70709431 Schweizer, 2003, 12(4), 56 Schweizer, 2003, Verification of regional snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37, 277, 10.1016/S0165-232X(03)00070-3 Stoffel, 1998, Spatial characteristics of avalanche activity in an Alpine valley - a GIS approach, Ann. Glaciol., 26, 329, 10.3189/1998AoG26-1-329-336 SWAG, 2016, Snow, weather, and avalanches: observational guidelines for avalanche programs in the United States Vickers, 2016, A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging, 18 Vogel, 2012, Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard, Cryosphere, 6, 157, 10.5194/tc-6-157-2012 Wesselink, 2017, Automatic detection of snow avalanche debris in central Svalbard using C-band SAR data, Polar Res., 36, 14 Wiesmann, 2001, Potential and methodology of satellite based SAR for hazard mapping