A complete snow avalanche activity record from a Norwegian forecasting region using Sentinel-1 satellite-radar data
Tài liệu tham khảo
Birkeland, 2001, The major snow avalanche cycle of February 1986 in the western United States, Nat. Hazards, 24, 75, 10.1023/A:1011192619039
Bühler, 2013, Automated identification of potential snow avalanche release areas based on digital elevation models, Nat. Hazards Earth Syst. Sci., 13, 1321, 10.5194/nhess-13-1321-2013
Caduff, 2016, Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow avalanches, 2016, 239
Davis, 1999, Relating storm and weather factors to dry slab avalanche activity at Alta, Utah, and Mammoth Mountain, California, using classification and regression trees, Cold Reg. Sci. Technol., 30, 79, 10.1016/S0165-232X(99)00032-4
Deems, 2013, Lidar measurement of snow depth: a review, J. Glaciol., 59, 467, 10.3189/2013JoG12J154
Eckerstorfer, 2011, Relating meteorological variables to the natural slab avalanche regime in High Arctic Svalbard, Cold Reg. Sci. Technol., 69, 184, 10.1016/j.coldregions.2011.08.008
Eckerstorfer, 2015, Manual detection of snow avalanche debris using high-resolution Radarsat-2 SAR images, Cold Reg. Sci. Technol., 120, 205, 10.1016/j.coldregions.2015.08.016
Eckerstorfer, 2016, Remote sensing of snow avalanches: recent advances, potential, and limitations, Cold Reg. Sci. Technol., 121, 126, 10.1016/j.coldregions.2015.11.001
Eineder, 2003, Efficient simulation of SAR interferograms of large areas and of rugged terrain, IEEE Trans. Geosci. Remote Sens., 41, 1415, 10.1109/TGRS.2003.811692
El Haji, 2016, Analysis of sentinel-1 radiometric stability and quality for land surface applications, Remote Sens., 8
Engeset, 2013, National avalanche warning service for Norway - established 2013, 301
Föhn, 1977, Evaluation and comparison of statistical and conventional methods of forecasting avalanche hazard, J. Glaciol., 19, 375, 10.1017/S0022143000029403
Haegeli, 2003, Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada, Cold Reg. Sci. Technol., 37, 255, 10.1016/S0165-232X(03)00069-7
Haegeli, 2007, Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada, J. Glaciol., 53, 266, 10.3189/172756507782202801
Hendrikx, 2005, Avalanche activity in an extreme maritime climate: the application of classification trees for forecasting, Cold Reg. Sci. Technol., 43, 104, 10.1016/j.coldregions.2005.05.006
Hendrikx, 2012, Time-lapse photography as an approach to understanding glide avalanche activity, 872
Hendrikx, 2014, Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska, Cold Reg. Sci. Technol., 97, 113, 10.1016/j.coldregions.2013.08.009
van Herwijnen, 2014, Monitoring snow cornice development using time-lapse photography, 865
van Herwijnen, 2011, Monitoring avalanche activity using a seismic sensor, Cold Reg. Sci. Technol., 69, 165, 10.1016/j.coldregions.2011.06.008
van Herwijnen, 2013, Using time-lapse photography in avalanche research, 950
van Herwijnen, 2016, Forecasting snow avalanches using avalanche activity data obtained through seismic monitoring, Cold Reg. Sci. Technol., 68, 10.1016/j.coldregions.2016.09.014
Larsen, 2005, A generic differential interferometric SAR processing system, with applications to land subsidence and snow-water equivalent retrieval, 6
Lu, 2003, Change detection techniques, Int. J. Remote Sens., 25, 2365, 10.1080/0143116031000139863
McClung, 2006
McCollister, 2003, Exploring multi-scale spatial patterns in historical avalanche data, Jackson Hole Mountain Resort, Wyoming, Cold Reg. Sci. Technol., 37, 299, 10.1016/S0165-232X(03)00072-7
MET
Mock, 2000, Snow avalanche climatology of the western United States mountain ranges, Bull. Am. Meteorol. Soc., 81, 2367, 10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2
Nagler, 2000, Retrieval of wet snow by means of multitemporal SAR data, IEEE Trans. Geosci. Remote Sens., 38, 754, 10.1109/36.842004
OGRS, 2014
Prokop, 2008, Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Reg. Sci. Technol., 54, 155, 10.1016/j.coldregions.2008.07.002
Prokop, 2014, Monitoring avalanche activity using distributed acoustic fiber optic sensing, 129
deQuervain, 1986, 50years of snow profiles on the Weissfluhjoch and relations to the surrounding avalanche activity (1936/37–1985/86), 162, 22
Schubert, 2012, COSMO-SkyMed, TerraSAR-X, and RADARSAT-2 geolocation accuracy after compensation for earth-system effects, 3301
Schubert, 2015, Sentinel-1A product geolocation accuracy: commissioning phase results, Remote Sens., 7, 9431, 10.3390/rs70709431
Schweizer, 2003, 12(4), 56
Schweizer, 2003, Verification of regional snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37, 277, 10.1016/S0165-232X(03)00070-3
Stoffel, 1998, Spatial characteristics of avalanche activity in an Alpine valley - a GIS approach, Ann. Glaciol., 26, 329, 10.3189/1998AoG26-1-329-336
SWAG, 2016, Snow, weather, and avalanches: observational guidelines for avalanche programs in the United States
Vickers, 2016, A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging, 18
Vogel, 2012, Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard, Cryosphere, 6, 157, 10.5194/tc-6-157-2012
Wesselink, 2017, Automatic detection of snow avalanche debris in central Svalbard using C-band SAR data, Polar Res., 36, 14
Wiesmann, 2001, Potential and methodology of satellite based SAR for hazard mapping