Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu so sánh lựa chọn kết hợp tỷ lệ tối ưu trong các bảng quyết định đa tỷ lệ tổng quát
Tóm tắt
Phương pháp tập hợp thô truyền thống chủ yếu được sử dụng để khám phá các quy tắc từ một bảng quyết định, trong đó các đối tượng có thể sở hữu một thuộc tính-giá trị duy nhất. Trong một tập dữ liệu thực tế, đối với cùng một thuộc tính, các đối tượng thường được đo lường ở các tỷ lệ khác nhau. Mục tiêu chính của bài báo này là nghiên cứu các kết hợp tỷ lệ tối ưu trong các bảng quyết định đa tỷ lệ tổng quát. Một bảng thông tin đa tỷ lệ tổng quát là một hệ thống thuộc tính-giá trị trong đó các thuộc tính khác nhau được đo lường ở các mức độ tỷ lệ khác nhau. Với mục đích điều tra việc đại diện kiến thức và việc thu nhận kiến thức trong các bảng quyết định đa tỷ lệ tổng quát không nhất quán, trước tiên, chúng tôi giới thiệu khái niệm về các kết hợp tỷ lệ trong một bảng thông tin đa tỷ lệ tổng quát. Sau đó, chúng tôi hình thành các hạt thông tin với các kết hợp tỷ lệ khác nhau trong các hệ thống thông tin đa tỷ lệ và thảo luận về mối quan hệ của chúng. Hơn nữa, chúng tôi định nghĩa các xấp xỉ dưới và trên của các tập hợp với các kết hợp tỷ lệ khác nhau và xem xét các thuộc tính của chúng. Cuối cùng, chúng tôi kiểm tra các kết hợp tỷ lệ tối ưu trong các bảng quyết định đa tỷ lệ tổng quát không nhất quán. Chúng tôi làm rõ mối quan hệ giữa các khái niệm khác nhau về các kết hợp tỷ lệ tối ưu trong các bảng quyết định đa tỷ lệ tổng quát không nhất quán.
Từ khóa
#tập hợp thô #bảng quyết định đa tỷ lệ #kết hợp tỷ lệ tối ưu #đại diện kiến thức #hệ thống thông tinTài liệu tham khảo
Bargiela A, Pedrycz W (2002) Granular computing: an introduction. Kluwer Academic Publishers, Boston
Bargiela A, Pedrycz W (2008) Toward a theory of granular computing for human-centered information processing. IEEE Trans Fuzzy Syst 16:320–330
Greco S, Matarazzo B, Slowinski R (2002) Rough approximation by dominance relation. Int J Intell Syst 17:153–171
Grzymala-Busse JW, Zuo X (1998) Classification strategies using certain and possible rules. In: Polkowski L, Skowron A(Eds.), Rough Sets and Current Trends in Computing. Lecture Notes in Computer Science 1424: 37–44
Gu SM, Wu WZ (2013) On knowledge acquisition in multi-scale decision systems. Int J Mach Learn Cyb 4:477–486
Hao C, Li JH, Fan M, Liu WQ, Tsang ECC (2017) Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions. Inf Sci 415:213–232
Hong TP, Tseng LH, Wang SL (2002) Learning rules from incomplete training examples by rough sets. Expert Syst Appl 22:285–293
Inuiguchi M, Hirano S, Tsumoto S (2002) Rough set theory and granular computing. Springer, Berlin
Komorowski J, Pawlak Z, Polkowski L, Skowron A (1999) Rough sets: tutorial. In: Pal SK, Skowron A (eds) Rough fuzzy hybridization, a new trend in decision making. Springer, Berlin, pp 3–98
Leung Y, Li DY (2003) Maximal consistent block technique for rule acquisition in incomplete information systems. Inf Sci 153:85–106
Leung Y, Wu WZ, Zhang WX (2006) Knowledge acquisition in incomplete information systems: a rough set approach. Eur J Operat Res 168:164–180
Leung Y, Zhang JS, Xu ZB (2000) Clustering by scale-space filtering. IEEE Trans Pattern Anal Mach Intell 22:1396–1410
Li F, Hu BQ (2017) A new approach of optimal scale selection to multi-scale decision tables. Inf Sci 381:193–208
Li F, Hu BQ, Wang J (2017) Stepwise optimal scale selection for multi-scale decision tables via attribute significance. Knowl Based Syst 129:4–16
Li JH, Ren Y, Mei CL, Qian YH, Yang XB (2016) A comparative study of multigranulation rough sets and concept lattices via rule acquisition. Knowl Based Syst 91:152–164
Lin TY (1997) Granular computing: From rough sets and neighborhood systems to information granulation and computing with words. In: European congress on intelligent techniques and soft computing, September 8-12: 1602–1606
Lin TY, Yao YY, Zadeh LA (2002) Data mining, rough sets and granular computing. Physica-Verlag, Heidelberg
Lingras PJ, Yao YY (1998) Data mining using extensions of the rough set model. J Am Soc Inf Sci 49:415–422
Luo C, Li TR, Chen HM, Fujita H, Yi Z (2018) Incremental rough set approach for hierarchical multicriteria classification. Inf Sci 429:72–87
Luo C, Li TR, Huang YY, Fujita H (2019) Updating three-way decisions in incomplete multi-scale information systems. Inf Sci 476:274–289
Ma JM, Zhang WX, Leung Y, Song XX (2007) Granular computing and dual Galois connection. Inf Sci 177:5365–5377
Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Boston
Pawlak Z (2001) Drawing conclusions from data–the rough set way. Int J Intell Syst 16:3–11
Pedrycz W (2001) Granular computing: an emerging paradigm. Physica-Verlag, Heidelberg
Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley, New York
Polkowski L, Tsumoto S, Lin TY (2000) Rough set methods and applications. Physica-Verlag, Berlin
Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
She YH, Li JH, Yang HL (2015) A local approach to rule induction in multi-scale decision tables. Knowl Based Syst 89:398–410
Skowron A (1989) The relationship between rough set theory and evidence theory. Bull Pol Acad Sci 37:87–90
Skowron A (1990) The rough sets theory and evidence theory. Fund Inf 13:245–262
Skowron A, Grzymala-Busse J (1994) From rough set theory to evidence theory. In: Yager RR, Fedrizzi M, Kacprzyk J (eds) Advance in the Dempster-Shafer theory of evidence. Wiley, New York, pp 193–236
Skowron A, Stepaniuk J (2001) Information granules: towards foundations of granular computing. Int J Intell Syst 16:57–85
Skowron A, Stepaniuk J, Swiniarski RW (2012) Modeling rough granular computing based on approximation spaces. Inf Sci 184:20–43
Wu WZ, Chen CJ, Li TJ, Xu YH (2016) Comparative study on optimal granularities in inconsistent multi-granular labeled decision systems. Pat Recogn Artif Intell 29(12):1103–1111
Wu WZ, Leung Y (2011) Theory and applications of granular labelled partitions in multi-scale decision tables. Inf Sci 181:3878–3897
Wu WZ, Leung Y (2013) Optimal scale selection for multi-scale decision tables. Int J Approx Reason 54:1107–1129
Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21:1461–1474
Wu WZ, Leung Y, Zhang WX (2002) Connections between rough set theory and Dempster-Shafer theory of evidence. Int J General Syst 31:405–430
Wu WZ, Qian YH, Li TJ, Gu SM (2017) On rule acquisition in incomplete multi-scale decision tables. Inf Sci 378:282–302
Wu WZ, Zhang M, Li HZ, Mi JS (2005) Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Inf Sci 174:143–164
Xie JP, Yang MH, Li JH, Zheng Z (2018) Rule acquisition and optimal scale selection in multi-scale formal decision contexts and their applications to smart city. Future Gener Comput Syst 83:564–581
Xu YH, Wu WZ, Tan AH (2017) Optimal scale selections in consistent generalized multi-scale decision tables. In: Proceedings of international joint conference on rough sets, July 3-7, 2017, Olsztyn, Poland. Lecture Notes in Artificial Intelligence. Springer, Berlin, 10313: 185–198
Yager RR (2008) Intelligent social network analysis using granular computing. Int J Intell Syst 23:1196–1219
Yao JT (2008) Recent developments in granular computing: A bibliometrics study. In: Proceedings of IEEE International Conference on Granular Computing, Hangzhou, China, Aug 26–28, 2008: 74–79
Yao YY (2001) Information granulation and rough set approximation. Int J Intell Syst 16:87–104
Yao YY (2004) A partition model of granular computing, transactions on rough sets I. Lect Notes Comput Sci 3100:232–253
Yao YY, Liau CJ, Zhong N (2003) Granular computing based on rough sets, quotient space theory, and belief functions. In: Proceedings of the 14th international symposium on foundations of intelligent systems. Lecture Notes in Computer Science, Springer, Berlin, 2871: 152–159
Yao YY, Lingras PJ (1998) Interpretations of belief functions in the theory of rough sets. Inf Sci 104:81–106
Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90:111–127
Zhang YQ (2005) Constructive granular systems with universal approximation and fast knowledge discovery. IEEE Trans Fuzzy Syst 13:48–57
Zhang WX, Leung Y, Wu WZ (2003) Information systems and knowledge discovery (in Chinese). Science Press, Beijing