A comparison of three approaches to non-stationary flood frequency analysis

Sisay Debele1, Witold G. Strupczewski1, Ewa Bogdanowicz1
1Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aucoin F (2015) FAdist: distributions that are sometimes used in hydrology. R package version 2.2. https://CRAN.R-project.org/package=FAdist

Becker M, Klößner S (2013) PearsonDS: Pearson distribution system. R package version 0.97. http://CRAN.R-project.org/package=PearsonDS

Bogdanowicz E. (2010) Multimodel approach to estimation of extreme value distribution quantiles. Podejście wielomodelowe w zagadnieniach estymacji kwantyli rozkładu wartości maksymalnej. In: Hydrologia w inżynierii i gospodarce wodnej. Tom 1, Ed. B. Więzik. Monografie Komitetu Inżynierii Środowiska, 68, (in Polish)

Bolker B, R Development Core Team (2016) bbmle: tools for general maximum likelihood estimation. R package version 1.0.18. https://CRAN.R-project.org/package=bbmle

Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York

Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127:353–369. doi: 10.1007/s10584-014-1254-5

Coles SG (2001) An introduction to statistical modeling of extreme values. Springer, London

Debele SE, Bogdanowicz E, Strupczewski WG (2017) The impact of seasonal flood peak dependence on annual maxima design quantiles. Hydrol Sci J. doi: 10.1080/02626667.2017.1328558

Draper D (1995) Assessment and propagation of model uncertainty (with discussion). J R Statist Soc B 57:45–97. doi: 10.1515/acgeo-2015-0070

Gatnar E (2008) Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji (Multimodel approach to issues of discrimination and regression). PWN, Warszawa (in Polish)

Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. doi: 10.18637/jss.v072.i08

Guidelines for flood frequency analysis long measurement series of river discharge (2005) WMO/HOMS Component I81.3.01. http://www.wmo.int/pages/prog/hwrp/homs/Components/English/i81301.htm . Accessed Apr 2017

Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc B 52:105–124

Kochanek K, Strupczewski WG, Bogdanowicz E, Feluch W, Markiewicz I (2013) Application of a hybrid approach in nonstationary flood frequency analysis—a Polish perspective. Nat Hazards Earth Syst Sci Discuss 1(5):6001–6024. doi: 10.5194/nhessd-1-6001-2013

Koenker R (2005) Quantile Regression. Cambridge Books, Cambridge University Press, New York

Kwon H-H, Brown C, Lall U (2008) Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys Res Lett. doi: 10.1029/2007GL032220

Lima CHR, Lall U (2010) Spatial scaling in a changing climate: a hierarchical bayesian model for nonstationary multi-site annual maximum and monthly streamflow. J Hydrol 383:307–318. doi: 10.1016/j.jhydrol.2009.12.045

López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spa-nish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17:3189–3203. doi: 10.5194/hess-17-3189-2013

Machado MJ, Botero BA, López J, Francés FA, Díez-Herrero BG (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576. doi: 10.5194/hess-19-2561-2015

Madigan D, Raftery AE (1994) Model selection and accounting for model uncertainty in graphical models using Occam’s window. J Am Statist Assoc 89:1535–1546

Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles Estimation. Hydrol Earth Syst Sci 14:2167–2175. doi: 10.5194/hess-14-2167-2010

Markiewicz I, Strupczewski WG, Bogdanowicz E, Kochanek K (2015) Generalized exponential distribution in flood frequency analysis for Polish. Rivers. doi: 10.1371/journal.pone.0143965

Mitosek HT, Strupczewski WG, Singh VP (2006) Three procedures for selection of annual flood peak distribution. J Hydrol 323:57–73. doi: 10.1016/j.hydrol.2005.08.016

Opyrchal L (2005) Metoda analizy i oceny ryzyka awarii opracowana dla polskich budowli hydrotechnicznych (Method of analysis and risk assessment of breakdown for Polish hydrotechnical structures), Materiały Badawcze, Instytut Meteorologii i Gospodarki Wodnej, Seria: Inżynieria Wodna, 0239-6254; 17 (in Polish)

R Core Team (2017) R: a language and environment for statistical computing. R Foundation or Statistical Computing, Vienna. ISBN 3-900051-07-0

Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. doi: 10.1111/j.1467-9876.2005.00510

Rigby RA, Stasinopoulos DM, Heller G, Voudouris V (2014) The distribution Toolbox of GAMLSS. ( http://www.gamlss.org/wp-content/uploads/2014/10/distributions.pdf )

Romanowicz RJ, Bogdanowicz E, Debele SE, Doroszkiewicz J, Hisdal H, Lawrence D, Meresa HK, Napiórkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the polish-norwegian project. Acta Geoph 64(2):477–509. doi: 10.1515/acgeo-2016-0009

Strupczewski WG, Feluch W (1998), Investigation of trend in annual peak flow series. Part I. Maximum likelihood estimation. In: Proceedings 2nd international conference on climate and water—A 1998 perspective, 17–20 August 1998, Espoo, Finland, vol 1. p 241–250

Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation. J Hydrol 248(1–4):143–151. doi: 10.1016/S0022-1694(01)00398-5

Strupczewski WG, Singh VP, Mitosek HT (2001a) Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi: 10.1016/S0022-1694(01)00399-7

Strupczewski WG, Singh VP, Feluch W (2001b) Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142. doi: 10.1016/S0022-1694(01)00397-3

Strupczewski WG, Mitosek HT, Kochanek K, Singh VP, Weglarczyk S (2006) Probability of correct selection from lognormal and convective diffusion models based on the likelihood ratio. Stoch Environ Res Risk Assess 20:152–163. doi: 10.1007/s00477-005-0030-5

Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34:612

Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2012) On seasonal approach to flood frequency modelling, Part I: flood frequency analysis of Polish rivers. Hydrol Process 26:705–716. doi: 10.1002/hyp.8179

Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2016) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geoph 64(1):206–236. doi: 10.1515/acgeo-2015-0070

Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009a) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:1–17

Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009b) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266. doi: 10.1029/2008WR007645

Villarini G, Smith JA, Napolitano F (2010a) Nonstationary modelling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267

Villarini G, Vecchi GA, Smith JA (2010b) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138:2681–2705

Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192. doi: 10.1002/joc.2331

Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi: 10.5194/hess-19-913

Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK (2016) Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J Hydrol 538:33–48

Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projection. J Hydrol 394(3–4):334–346

Yan H, Moradkhani H (2015) A regional Bayesian hierarchical model for flood frequency analysis. Stoch Env Res Risk Assess 29(3):1019–1036. doi: 10.1007/s00477-014-0975-3

Yan H, Moradkhani H (2016) Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards 81(1):203–225. doi: 10.1007/s11069-015-2070-6

Zhang Q, Gu X, Singh VP et al (2015a) Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China. J Hydrol 527:565–575. doi: 10.1016/j.jhydrol.2015.05.029

Zhang D, Yan D, Wang YC, Lu F, Liu S (2015b) GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China. Nat Hazards 77:1037–1053. doi: 10.1007/s11069-015-1638-5