A comparison of three approaches to non-stationary flood frequency analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aucoin F (2015) FAdist: distributions that are sometimes used in hydrology. R package version 2.2. https://CRAN.R-project.org/package=FAdist
Becker M, Klößner S (2013) PearsonDS: Pearson distribution system. R package version 0.97. http://CRAN.R-project.org/package=PearsonDS
Bogdanowicz E. (2010) Multimodel approach to estimation of extreme value distribution quantiles. Podejście wielomodelowe w zagadnieniach estymacji kwantyli rozkładu wartości maksymalnej. In: Hydrologia w inżynierii i gospodarce wodnej. Tom 1, Ed. B. Więzik. Monografie Komitetu Inżynierii Środowiska, 68, (in Polish)
Bolker B, R Development Core Team (2016) bbmle: tools for general maximum likelihood estimation. R package version 1.0.18. https://CRAN.R-project.org/package=bbmle
Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York
Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127:353–369. doi: 10.1007/s10584-014-1254-5
Debele SE, Bogdanowicz E, Strupczewski WG (2017) The impact of seasonal flood peak dependence on annual maxima design quantiles. Hydrol Sci J. doi: 10.1080/02626667.2017.1328558
Draper D (1995) Assessment and propagation of model uncertainty (with discussion). J R Statist Soc B 57:45–97. doi: 10.1515/acgeo-2015-0070
Gatnar E (2008) Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji (Multimodel approach to issues of discrimination and regression). PWN, Warszawa (in Polish)
Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. doi: 10.18637/jss.v072.i08
Guidelines for flood frequency analysis long measurement series of river discharge (2005) WMO/HOMS Component I81.3.01. http://www.wmo.int/pages/prog/hwrp/homs/Components/English/i81301.htm . Accessed Apr 2017
Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc B 52:105–124
Kochanek K, Strupczewski WG, Bogdanowicz E, Feluch W, Markiewicz I (2013) Application of a hybrid approach in nonstationary flood frequency analysis—a Polish perspective. Nat Hazards Earth Syst Sci Discuss 1(5):6001–6024. doi: 10.5194/nhessd-1-6001-2013
Kwon H-H, Brown C, Lall U (2008) Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys Res Lett. doi: 10.1029/2007GL032220
Lima CHR, Lall U (2010) Spatial scaling in a changing climate: a hierarchical bayesian model for nonstationary multi-site annual maximum and monthly streamflow. J Hydrol 383:307–318. doi: 10.1016/j.jhydrol.2009.12.045
López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spa-nish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17:3189–3203. doi: 10.5194/hess-17-3189-2013
Machado MJ, Botero BA, López J, Francés FA, Díez-Herrero BG (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576. doi: 10.5194/hess-19-2561-2015
Madigan D, Raftery AE (1994) Model selection and accounting for model uncertainty in graphical models using Occam’s window. J Am Statist Assoc 89:1535–1546
Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles Estimation. Hydrol Earth Syst Sci 14:2167–2175. doi: 10.5194/hess-14-2167-2010
Markiewicz I, Strupczewski WG, Bogdanowicz E, Kochanek K (2015) Generalized exponential distribution in flood frequency analysis for Polish. Rivers. doi: 10.1371/journal.pone.0143965
Mitosek HT, Strupczewski WG, Singh VP (2006) Three procedures for selection of annual flood peak distribution. J Hydrol 323:57–73. doi: 10.1016/j.hydrol.2005.08.016
Opyrchal L (2005) Metoda analizy i oceny ryzyka awarii opracowana dla polskich budowli hydrotechnicznych (Method of analysis and risk assessment of breakdown for Polish hydrotechnical structures), Materiały Badawcze, Instytut Meteorologii i Gospodarki Wodnej, Seria: Inżynieria Wodna, 0239-6254; 17 (in Polish)
R Core Team (2017) R: a language and environment for statistical computing. R Foundation or Statistical Computing, Vienna. ISBN 3-900051-07-0
Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. doi: 10.1111/j.1467-9876.2005.00510
Rigby RA, Stasinopoulos DM, Heller G, Voudouris V (2014) The distribution Toolbox of GAMLSS. ( http://www.gamlss.org/wp-content/uploads/2014/10/distributions.pdf )
Romanowicz RJ, Bogdanowicz E, Debele SE, Doroszkiewicz J, Hisdal H, Lawrence D, Meresa HK, Napiórkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the polish-norwegian project. Acta Geoph 64(2):477–509. doi: 10.1515/acgeo-2016-0009
Strupczewski WG, Feluch W (1998), Investigation of trend in annual peak flow series. Part I. Maximum likelihood estimation. In: Proceedings 2nd international conference on climate and water—A 1998 perspective, 17–20 August 1998, Espoo, Finland, vol 1. p 241–250
Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation. J Hydrol 248(1–4):143–151. doi: 10.1016/S0022-1694(01)00398-5
Strupczewski WG, Singh VP, Mitosek HT (2001a) Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi: 10.1016/S0022-1694(01)00399-7
Strupczewski WG, Singh VP, Feluch W (2001b) Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142. doi: 10.1016/S0022-1694(01)00397-3
Strupczewski WG, Mitosek HT, Kochanek K, Singh VP, Weglarczyk S (2006) Probability of correct selection from lognormal and convective diffusion models based on the likelihood ratio. Stoch Environ Res Risk Assess 20:152–163. doi: 10.1007/s00477-005-0030-5
Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34:612
Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2012) On seasonal approach to flood frequency modelling, Part I: flood frequency analysis of Polish rivers. Hydrol Process 26:705–716. doi: 10.1002/hyp.8179
Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2016) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geoph 64(1):206–236. doi: 10.1515/acgeo-2015-0070
Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009a) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:1–17
Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009b) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266. doi: 10.1029/2008WR007645
Villarini G, Smith JA, Napolitano F (2010a) Nonstationary modelling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267
Villarini G, Vecchi GA, Smith JA (2010b) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138:2681–2705
Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192. doi: 10.1002/joc.2331
Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi: 10.5194/hess-19-913
Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK (2016) Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J Hydrol 538:33–48
Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projection. J Hydrol 394(3–4):334–346
Yan H, Moradkhani H (2015) A regional Bayesian hierarchical model for flood frequency analysis. Stoch Env Res Risk Assess 29(3):1019–1036. doi: 10.1007/s00477-014-0975-3
Yan H, Moradkhani H (2016) Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards 81(1):203–225. doi: 10.1007/s11069-015-2070-6
Zhang Q, Gu X, Singh VP et al (2015a) Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China. J Hydrol 527:565–575. doi: 10.1016/j.jhydrol.2015.05.029