A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation

Kuang C. Yeh1, K.C. Kwan1
1Merck Sharp & Dohme Research Laboratories, West Point

Tóm tắt

Từ khóa


Tài liệu tham khảo

B. Carnahan, H. A. Luther, and J. O. Wilkes.Applied Numerical Methods, Wiley, New York, 1969, pp. 71–72.

D. D. McCracken and W. S. Dorn.Numerical Methods and FORTRAN Programming, Wiley, New York, 1964, pp. 161–163.

J. H. Ahlberg, E. N. Nilson, and J. L. Walsh.The Theory of Splines and Their Applications, Academic Press, New York, 1967.

S. Wold. Spline functions in data analysis.Tecknometrics 16:1–11 (1974).

B. Carnahan, H. A. Luther, and J. O. Wilkes.Applied Numerical Methods, Wiley, New York, pp. 27–34.

F. Scheid.Schaum's Outline of Theory and Problems of Numerical Analysis, McGraw-Hill, New York, 1968, p. 80.

T. N. E. Greville. Spline functions, interpolation, and numerical quadrature. In A. Ralston and H. W. Wilf (eds.),Mathematical Methods for Digital Computers, Vol. II, Wiley, New York, 1967, pp. 156–168.

L. G. Dunfield and J. F. Read. Determination of reaction rates by the use of cubic spline interpolation.J. Phys. Chem. 57:2178–2183 (1972).

B. Carnahan, H. A. Luther, and J. O. Wilkes.Applied Numerical Methods, Wiley, New York, p. 361.

User's Guide: Numerical Analysis Routines, General Electric, Bethesda, Md., 1971, p. 358.

K. C. Yen, Kinetic parameter estimation by numerical algorithms and multiple linear regression: theoretical.J. Pharm. Sci. 66:1688–1691 (1977).

HP-67 Math Pac. Hewlett-Packard, Cupertino, Calif., 1976.