A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation

Jessica S Elman1, Matthew Li2, Fangjing Wang1, Jeffrey M. Gimble3, Biju Parekkadan4
1Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children in Boston, Boston, MA 02114, USA
2Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
3Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
4Harvard Stem Cell Institute, Boston, MA 02115, USA

Tóm tắt

Abstract Background Bone marrow-derived mesenchymal stromal cells (BMSCs) are a cell population of intense exploration for therapeutic use in inflammatory diseases. Secreted factors released by BMSCs are responsible for the resolution of inflammation in several pre-clinical models. New studies have uncovered that adipose tissue also serves as a reservoir of multipotent, non-hematopoietic stem cells, termed adipose-derived stromal/stem cells (ASCs), with many common characteristics to BMSCs. We hypothesized that ASC and BMSC secreted factors would lead to a comparable benefit in the context of generalized inflammation. Findings Proteomic profiling of conditioned media revealed that BMSCs express significantly higher levels of sVEGFR1 and sTNFR1, two soluble cytokine receptors with known therapeutic activity in sepsis. In a prophylactic study of endotoxin-induced inflammation in mice, we observed that BMSC secreted factors provided a greater survival benefit and tissue protection of endotoxemic mice compared to ASCs. Neutralization of sVEGFR1 and sTNFR1 did not significantly affect the survival benefit experienced by mice treated with BMSC secreted factors. Conclusions Our findings suggest that BMSCs may be more effective as a cell therapeutic for use in endotoxic shock and that ASCs may be positioned for continued exploration in immunomodulatory diseases. Soluble cytokine receptors can distinguish stromal cells from different tissue origins, though they may not be the sole contributors to the therapeutic benefit of BMSCs. Furthermore, other secreted factors not discussed in this study may also differentiate these stromal cell populations from one another.

Từ khóa


Tài liệu tham khảo

Le Gall J, Lemeshow S, Leleu G, Klar J, Huillard J, Rue M, Teres D, Artigas A: Customized probability models for early severe sepsis in adult intensive care patients. Intensive Care Unit Scoring Group. JAMA. 1995, 273: 644-650. 10.1001/jama.1995.03520320054041.

Hotchkiss RS, Karl IE: The pathophysiology and treatment of sepsis. N Engl J Med. 2003, 348: 138-150. 10.1056/NEJMra021333.

Fernandez-Botran R: Soluble cytokine receptors: their role in immunoregulation. Faseb J. 1991, 5: 2567-2574.

Levine SJ: Mechanisms of soluble cytokine receptor generation. J Immunol. 2004, 173: 5343-5348.

Weckmann AL, Alcocer-Varela J: Cytokine inhibitors in autoimmune disease. Semin Arthritis Rheum. 1996, 26: 539-557. 10.1016/S0049-0172(96)80042-4.

Silva LC, Ortigosa LC, Benard G: Anti-TNF-alpha agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010, 2: 817-833. 10.2217/imt.10.67.

Warren HS: Strategies for the treatment of sepsis. N Engl J Med. 1997, 336: 952-953. 10.1056/NEJM199703273361311.

Tsao PN, Chan FT, Wei SC, Hsieh WS, Chou HC, Su YN, Chen CY, Hsu WM, Hsieh FJ, Hsu SM: Soluble vascular endothelial growth factor receptor-1 protects mice in sepsis. Crit Care Med. 2007, 35: 1955-1960. 10.1097/01.CCM.0000275273.56547.B8.

Shapiro NI, Aird WC: Sepsis and the broken endothelium. Crit Care. 2011, 15: 135-10.1186/cc10044.

Parekkadan B, Milwid JM: Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010, 12: 87-117. 10.1146/annurev-bioeng-070909-105309.

Bonfield TL, Nolan Koloze MT, Lennon DP, Caplan AI: Defining human mesenchymal stem cell efficacy in vivo. J Inflamm (Lond). 2010, 7: 51-10.1186/1476-9255-7-51.

Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, et al: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009, 15: 42-49. 10.1038/nm.1905.

Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML: Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther. 2010, 18: 1857-1864. 10.1038/mt.2010.155.

Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML: Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE. 2007, 2: e941-10.1371/journal.pone.0000941.

Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105: 1815-1822. 10.1182/blood-2004-04-1559.

Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J: Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21: 2724-2752. 10.1089/scd.2011.0722.

Zhu X, Shi W, Tai W, Liu F: The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells. Cell Tissue Res. 2012, 350 (2): 277-287. 10.1007/s00441-012-1453-1.

Yu GWX, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM: Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy. 2010, 12: 538-546. 10.3109/14653241003649528.

Yu G, Floyd ZE, Wu X, Halvorsen YD, Gimble JM: Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol. 2011, 702: 17-27. 10.1007/978-1-61737-960-4_2.

van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML: Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008, 47: 1634-1643. 10.1002/hep.22236.

Lowell CA, Berton G: Resistance to endotoxic shock and reduced neutrophil migration in mice deficient for the Src-family kinases Hck and Fgr. Proc Natl Acad Sci U S A. 1998, 95: 7580-7584. 10.1073/pnas.95.13.7580.

Robertson CM, Coopersmith CM: The systemic inflammatory response syndrome. Microbes Infect. 2006, 8: 1382-1389. 10.1016/j.micinf.2005.12.016.

Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D: Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med. 1992, 175: 323-329. 10.1084/jem.175.2.323.

Bautch VL: Endothelial cells form a phalanx to block tumor metastasis. Cell. 2009, 136: 810-812. 10.1016/j.cell.2009.02.021.