A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdelaala, 2019, Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt, Ecol. Inform., 50, 68, 10.1016/j.ecoinf.2019.01.003
Alatawi, 2020, Modelling terrestrial reptile species richness, distributions and habitat suitability in Saudi Arabia, J. Arid Environ., 178, 104153, 10.1016/j.jaridenv.2020.104153
Algar, 2009, Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods, Ecography, 32, 22, 10.1111/j.1600-0587.2009.05832.x
Allouche, 2006, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS), J. Appl. Ecol., 43, 1223, 10.1111/j.1365-2664.2006.01214.x
Araújo, 2007, Ensemble forecasting of species distributions, Trends Ecol. Evol., 22, 42, 10.1016/j.tree.2006.09.010
Araújo, 2005, Reducing uncertainty in projections of extinction risk from climate change, Glob. Ecol. Biogeogr., 14, 529, 10.1111/j.1466-822X.2005.00182.x
Austin, 2011, Improving species distribution models for climate change studies: variable selection and scale, J. Biogeogr., 38, 1, 10.1111/j.1365-2699.2010.02416.x
Baha-El-Din, 2006, A guide to the reptiles and amphibians of Egypt
Baldwin, 2009, Use of maximum entropy modeling in wildlife research, Entropy, 11, 854, 10.3390/e11040854
Baselga, 2009, Individualistic vs community modelling of species distributions under climate change, Ecography, 32, 55, 10.1111/j.1600-0587.2009.05856.x
Batanouny, 1999, Wild medicinal plants in Egypt : an inventory to support conservation and sustainable use
Beaumont, 2016, Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?, Ecol. Model., 342, 135, 10.1016/j.ecolmodel.2016.10.004
Benito, 2013, The impact of modelling choices in the predictive performance of richness maps derived from species-distribution models: guidelines to build better diversity models, Methods Ecol. Evol., 4, 327, 10.1111/2041-210x.12022
Boulos, 1999, 4
Breiman, 1984
Breiner, 2016, Overcoming limitations of modelling rare species by using ensembles of small models, J. Anim. Ecol., 1210
Bucklin, 2015, Comparing species distribution models constructed with different subsets of environmental predictors, Divers. Distrib., 21, 23, 10.1111/ddi.12247
Buisson, 2010, Uncertainty in ensemble forecasting of species distribution, Glob. Chang. Biol., 16, 1145, 10.1111/j.1365-2486.2009.02000.x
Calabrese, 2014, Stacking species distribution models and adjusting bias by linking them to macroecological models, Glob. Ecol. Biogeogr., 23, 99, 10.1111/geb.12102
Das, 2016, Impact of climate change on medicinal and aromatic plants: review, Indian J. Agric. Sci., 86, 1375
De’ath, 2002, Multivariate regression trees: a New technique for modeling species–environment relationships, Ecology, 83, 1105
Diniz-Filho, 2009, Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change, Ecography, 32, 897, 10.1111/j.1600-0587.2009.06196.x
Distler, 2015, Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change, J. Biogeogr., 42, 976, 10.1111/jbi.12479
Dormann, 2007, Methods to account for spatial autocorrelation in the analysis of species distributional data: a review, Ecography, 30, 609, 10.1111/j.2007.0906-7590.05171.x
Edwards, 2006, Effects of sample survey design on the accuracy of classification tree models in species distribution models, Ecol. Model., 199, 132, 10.1016/j.ecolmodel.2006.05.016
El-Gabbas, 2017, Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent, Ecography, 41, 1161, 10.1111/ecog.03149
El-Gabbas, 2016, Conserving Egypt's reptiles under climate change, J. Arid Environ., 127, 211, 10.1016/j.jaridenv.2015.12.007
Elith, 2009, Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models, Ecography, 32, 66, 10.1111/j.1600-0587.2008.05505.x
Elith, 2009, Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677, 10.1146/annurev.ecolsys.110308.120159
Elith, 2006, Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x
Elith, 2011, A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 17, 43, 10.1111/j.1472-4642.2010.00725.x
El-Nahrawy
Engler, 2004, An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data, J. Appl. Ecol., 41, 263, 10.1111/j.0021-8901.2004.00881.x
Evans, 2011, Modeling species distribution and change using random forest, in: predictive species and habitat modeling in landscape, Ecology, 139
Fielding, 1997, A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 24, 38, 10.1017/S0376892997000088
Fitzpatrick, 2013, MaxEnt versus MaxLike: empirical comparisons with ant species distributions, Ecosphere, 4, art55, 10.1890/ES13-00066.1
Fois, 2018, Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions, Ecol. Model., 385, 124, 10.1016/j.ecolmodel.2018.07.018
Fourcade, 2014, Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias, PLoS One, 9, 10.1371/journal.pone.0097122
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 29, 1189, 10.1214/aos/1013203451
Gairola, 2010, Influence of climate change on production of secondary chemicals in high altitude medicinal plants: issues needs immediate attention, J. Med. Plant Res., 4, 1825
González-Irusta, 2015, Comparing species distribution models: a case study of four deep sea urchin species, Hydrobiologia, 745, 43, 10.1007/s10750-014-2090-3
Graham, 2008, The influence of spatial errors in species occurrence data used in distribution models, J. Appl. Ecol., 45, 239, 10.1111/j.1365-2664.2007.01408.x
Grenouillet, 2011, Ensemble modelling of species distribution: the effects of geographical and environmental ranges, Ecography, 34, 9, 10.1111/j.1600-0587.2010.06152.x
Guillera-Arroita, 2014, MaxEnt is not a presence absence method: a comment on Thibaud et al, Methods Ecol. Evol., 5, 1192, 10.1111/2041-210X.12252
Guisan, 2011, SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages, J. Biogeogr., 38, 1433, 10.1111/j.1365-2699.2011.02550.x
Guisan, 2002, Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89, 10.1016/S0304-3800(02)00204-1
Guisan, 2006, Making better biogeographical predictions of species’ distributions, J. Appl. Ecol., 43, 386, 10.1111/j.1365-2664.2006.01164.x
Halvorsen, 2013, A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling, Sommerfeltia, 36, 1, 10.2478/v10208-011-0016-2
Hannah, 2011
Hao, 2019, A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD, Divers. Distrib., 25, 839, 10.1111/ddi.12892
Hastie, 2004, Generalized additive models
Hastie, 1994, Flexible discriminant analysis by optimal scoring, J. Am. Stat. Assoc., 89, 1255, 10.1080/01621459.1994.10476866
Hefley, 2016, Hierarchical species distribution models, Curr. Landscape. Ecol. Rep., 1, 87, 10.1007/s40823-016-0008-7
Hijmans, 2013, Species distribution modeling with R, Encycl. Biodivers., 6
Hijmans, 2006, The ability of climate envelope models to predict the effect of climate change on species distributions, Glob. Chang. Biol., 12, 2272, 10.1111/j.1365-2486.2006.01256.x
Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276
Hijmans
Hoath, 2003
Jarnevich, 2015, 65
Kaky, 2020, Potential habitat suitability of Iraqi amphibians under climate change, Biodiversitas, 21, 731, 10.13057/biodiv/d210240
Kaky, 2016, Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants, J. Arid Environ., 135, 140, 10.1016/j.jaridenv.2016.09.001
Kaky, 2017, Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change, PLoS One, 12, e0187714, 10.1371/journal.pone.0187714
Kaky, 2019, Allowing for human socioeconomic impacts in the conservation of plants under climate chang, Plant Biosyst., 154, 295, 10.1080/11263504.2019.1610109
Kaky, 2019, Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria, J. Arid Environ., 170, 103988
Khanum, 2013, Predicting impacts of climate change on medicinal asclepiads of Pakistan using MaxEnt modeling, Acta Oecol., 49, 23, 10.1016/j.actao.2013.02.007
Kharouba, 2013, Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models, Ecography, 36, 657, 10.1111/j.1600-0587.2012.07683.x
Ko, 2016, The limits of direct community modeling approaches for broad-scale predictions of ecological assemblage structure, Biol. Conserv., 201, 396, 10.1016/j.biocon.2016.07.026
Latimer, 2006, Building statistical models to analyze species distributions, Ecol. Appl., 16, 33, 10.1890/04-0609
Liu, 2011, Measuring and comparing the accuracy of species distribution models with presence–absence data, Ecography, 34, 232, 10.1111/j.1600-0587.2010.06354.x
Mahmoud, 2013, Traditional knowledge and use of medicinal plants in the Eastern Desert of Egypt: a case study from Wadi El-Gemal National Park, J. Med. Plants Stud., 1, 10
Marmion, 2009, Evaluation of consensus methods in predictive species distribution modelling, Divers. Distrib., 15, 59, 10.1111/j.1472-4642.2008.00491.x
Marquardt, 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591, 10.2307/1267205
Martínez-Meyer, 2005, Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions, Biodivers. Inform., 2, 42, 10.17161/bi.v2i0.8
McCullagh, 1989
Merckx, 2011, Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling, Ecol. Model., 222, 588, 10.1016/j.ecolmodel.2010.11.016
Merow, 2013, A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058, 10.1111/j.1600-0587.2013.07872.x
Monk, 2010, Habitat suitability for marine fishes using presence-only modelling and multibeam sonar, Mar. Ecol. Prog. Ser., 420, 157, 10.3354/meps08858
Morales, 2017, MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review, PeerJ, 5, 10.7717/peerj.3093
Naimi, 2016, sdm: a reproducible and extensible R platform for species distribution modelling, Ecography, 39, 368, 10.1111/ecog.01881
Newbold, 2010, Testing the accuracy of species distribution models using species records from a new field survey, Oikos, 119, 1326, 10.1111/j.1600-0706.2009.18295.x
Norberg, 2019, A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels, Ecol. Monogr., 89, 10.1002/ecm.1370
Oppel, 2012, Comparison of five modeling techniques to predict the spatial distribution and abundance of seabirds, Biol. Conserv., 156, 94, 10.1016/j.biocon.2011.11.013
Pearson, 2003, Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?, Glob. Ecol. Biogeogr., 12, 361, 10.1046/j.1466-822X.2003.00042.x
Peterson, 2011
Phillips, 2008, Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 31, 161, 10.1111/j.0906-7590.2008.5203.x
Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Pollock, 2014, Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM), Methods Ecol. Evol., 5, 397, 10.1111/2041-210X.12180
Urban, 2016, Improving the forecast for biodiversity under climate change, Science, 353, 10.1126/science.aad8466
van Proosdij, 2015, Minimum required number of specimen records to develop accurate species distribution models, Ecography, 38, 001
R Core Team, 2014
Reiss, 2011, Species distribution modelling of marine benthos: a North Sea case study, Mar. Ecol. Prog. Ser., 442, 71, 10.3354/meps09391
Royle, 2012, Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions, Methods Ecol. Evol., 3, 545, 10.1111/j.2041-210X.2011.00182.x
Saupe, 2011, Tracking a medically important spider: climate change, ecological niche modeling, and the Brown recluse (Loxosceles reclusa), PLoS One, 6, 10.1371/journal.pone.0017731
Schoener, 1968, Anolis lizards of Bimini: resource partitioning in a complex fauna, Ecology, 49, 704, 10.2307/1935534
Segurado, 2004, An evaluation of methods for modelling species distributions, J. Biogeogr., 31, 1555, 10.1111/j.1365-2699.2004.01076.x
Stohlgren, 2010, Ensemble habitat mapping of invasive plant species, Risk Anal., 30, 224, 10.1111/j.1539-6924.2009.01343.x
Svenning, 2011, Applications of species distribution modeling to paleobiology, Quat. Sci. Rev., 30, 2930, 10.1016/j.quascirev.2011.06.012
Svetnik, 2003, Random forest: a classification and regression tool for compound classification and QSAR modeling, J. Chem. Inf. Comput. Sci., 43, 1947, 10.1021/ci034160g
Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615
Thibaud, 2014, Measuring the relative effect of factors affecting species distribution model predictions, Methods Ecol. Evol., 5, 947, 10.1111/2041-210X.12203
Thuiller, 2003, BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change, Glob. Chang. Biol., 9, 1353, 10.1046/j.1365-2486.2003.00666.x
Thuiller, 2004, Effects of restricting environmental range of data to project current and future species distributions, Ecography, 27, 165, 10.1111/j.0906-7590.2004.03673.x
Vapnik, 1995
Vasconcelos, 2012, Species distribution modelling as a macroecological tool: a case study using New World amphibians, Ecography, 35, 539, 10.1111/j.1600-0587.2011.07050.x
Warren, 2008, Environmental niche equivalency versusconservatism: quantitative approaches to niche evolution, Evolution, 62, 2868, 10.1111/j.1558-5646.2008.00482.x
Warren, 2010, ENMTools: a toolbox for comparative studies of environmental niche models, Ecography, 30, 607, 10.1111/j.1600-0587.2009.06142.x
Warton, 2015, So many variables: joint modeling in community ecology, Trends Ecol. Evol., 30, 766, 10.1016/j.tree.2015.09.007
Wayne, 2013
Wisz, 2008, Effects of sample size on the performance of species distribution models, Divers. Distrib., 14, 763, 10.1111/j.1472-4642.2008.00482.x
Wright, 2016, Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians, Clim. Chang., 134, 579, 10.1007/s10584-015-1552-6
Yackulic, 2013, Presence-only modelling using MAXENT: when can we trust the inferences?, Methods Ecol. Evol., 4, 236, 10.1111/2041-210x.12004
Yi, 2016, MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China, Ecol. Eng., 92, 260, 10.1016/j.ecoleng.2016.04.010
Zaniewski, 2002, Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns, Ecol. Model., 157, 261, 10.1016/S0304-3800(02)00199-0
Zhang, 2012, Using species distribution modeling to improve conservation and land use planning of Yunnan, China, Biol. Conserv., 153, 257, 10.1016/j.biocon.2012.04.023
Zhang, 2018, MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change, Sci. Total Environ., 634, 1326, 10.1016/j.scitotenv.2018.04.112
Zhao, 2018, Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don, Plant Biosyst., 152, 349, 10.1080/11263504.2017.1289273
Zimmermann, 2010, New trends in species distribution modelling, Ecography, 33, 985, 10.1111/j.1600-0587.2010.06953.x
Zurada, 1992