A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants

Ecological Informatics - Tập 60 - Trang 101150 - 2020
Emad Kaky1,2,3, Victoria Nolan3, Abdulaziz S. Alatawi4,3, Francis Gilbert3
1Kalar Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
2Research Centre, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
3School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
4Department of Biology, University of Tabuk, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelaala, 2019, Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt, Ecol. Inform., 50, 68, 10.1016/j.ecoinf.2019.01.003

Alatawi, 2020, Modelling terrestrial reptile species richness, distributions and habitat suitability in Saudi Arabia, J. Arid Environ., 178, 104153, 10.1016/j.jaridenv.2020.104153

Algar, 2009, Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods, Ecography, 32, 22, 10.1111/j.1600-0587.2009.05832.x

Allouche, 2006, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS), J. Appl. Ecol., 43, 1223, 10.1111/j.1365-2664.2006.01214.x

Araújo, 2007, Ensemble forecasting of species distributions, Trends Ecol. Evol., 22, 42, 10.1016/j.tree.2006.09.010

Araújo, 2005, Reducing uncertainty in projections of extinction risk from climate change, Glob. Ecol. Biogeogr., 14, 529, 10.1111/j.1466-822X.2005.00182.x

Austin, 2011, Improving species distribution models for climate change studies: variable selection and scale, J. Biogeogr., 38, 1, 10.1111/j.1365-2699.2010.02416.x

Baha-El-Din, 2006, A guide to the reptiles and amphibians of Egypt

Baldwin, 2009, Use of maximum entropy modeling in wildlife research, Entropy, 11, 854, 10.3390/e11040854

Baselga, 2009, Individualistic vs community modelling of species distributions under climate change, Ecography, 32, 55, 10.1111/j.1600-0587.2009.05856.x

Batanouny, 1999, Wild medicinal plants in Egypt : an inventory to support conservation and sustainable use

Beaumont, 2016, Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?, Ecol. Model., 342, 135, 10.1016/j.ecolmodel.2016.10.004

Benito, 2013, The impact of modelling choices in the predictive performance of richness maps derived from species-distribution models: guidelines to build better diversity models, Methods Ecol. Evol., 4, 327, 10.1111/2041-210x.12022

Boulos, 1999, 4

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Breiman, 1984

Breiner, 2016, Overcoming limitations of modelling rare species by using ensembles of small models, J. Anim. Ecol., 1210

Bucklin, 2015, Comparing species distribution models constructed with different subsets of environmental predictors, Divers. Distrib., 21, 23, 10.1111/ddi.12247

Buisson, 2010, Uncertainty in ensemble forecasting of species distribution, Glob. Chang. Biol., 16, 1145, 10.1111/j.1365-2486.2009.02000.x

Calabrese, 2014, Stacking species distribution models and adjusting bias by linking them to macroecological models, Glob. Ecol. Biogeogr., 23, 99, 10.1111/geb.12102

Das, 2016, Impact of climate change on medicinal and aromatic plants: review, Indian J. Agric. Sci., 86, 1375

De’ath, 2002, Multivariate regression trees: a New technique for modeling species–environment relationships, Ecology, 83, 1105

Diniz-Filho, 2009, Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change, Ecography, 32, 897, 10.1111/j.1600-0587.2009.06196.x

Distler, 2015, Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change, J. Biogeogr., 42, 976, 10.1111/jbi.12479

Dormann, 2007, Methods to account for spatial autocorrelation in the analysis of species distributional data: a review, Ecography, 30, 609, 10.1111/j.2007.0906-7590.05171.x

Edwards, 2006, Effects of sample survey design on the accuracy of classification tree models in species distribution models, Ecol. Model., 199, 132, 10.1016/j.ecolmodel.2006.05.016

El-Gabbas, 2017, Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent, Ecography, 41, 1161, 10.1111/ecog.03149

El-Gabbas, 2016, Conserving Egypt's reptiles under climate change, J. Arid Environ., 127, 211, 10.1016/j.jaridenv.2015.12.007

Elith, 2009, Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models, Ecography, 32, 66, 10.1111/j.1600-0587.2008.05505.x

Elith, 2009, Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677, 10.1146/annurev.ecolsys.110308.120159

Elith, 2006, Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x

Elith, 2011, A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 17, 43, 10.1111/j.1472-4642.2010.00725.x

El-Nahrawy

Engler, 2004, An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data, J. Appl. Ecol., 41, 263, 10.1111/j.0021-8901.2004.00881.x

Evans, 2011, Modeling species distribution and change using random forest, in: predictive species and habitat modeling in landscape, Ecology, 139

Fielding, 1997, A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 24, 38, 10.1017/S0376892997000088

Fitzpatrick, 2013, MaxEnt versus MaxLike: empirical comparisons with ant species distributions, Ecosphere, 4, art55, 10.1890/ES13-00066.1

Fois, 2018, Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions, Ecol. Model., 385, 124, 10.1016/j.ecolmodel.2018.07.018

Fourcade, 2014, Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias, PLoS One, 9, 10.1371/journal.pone.0097122

Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 29, 1189, 10.1214/aos/1013203451

Gairola, 2010, Influence of climate change on production of secondary chemicals in high altitude medicinal plants: issues needs immediate attention, J. Med. Plant Res., 4, 1825

González-Irusta, 2015, Comparing species distribution models: a case study of four deep sea urchin species, Hydrobiologia, 745, 43, 10.1007/s10750-014-2090-3

Graham, 2008, The influence of spatial errors in species occurrence data used in distribution models, J. Appl. Ecol., 45, 239, 10.1111/j.1365-2664.2007.01408.x

Grenouillet, 2011, Ensemble modelling of species distribution: the effects of geographical and environmental ranges, Ecography, 34, 9, 10.1111/j.1600-0587.2010.06152.x

Guillera-Arroita, 2014, MaxEnt is not a presence absence method: a comment on Thibaud et al, Methods Ecol. Evol., 5, 1192, 10.1111/2041-210X.12252

Guisan, 2011, SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages, J. Biogeogr., 38, 1433, 10.1111/j.1365-2699.2011.02550.x

Guisan, 2002, Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89, 10.1016/S0304-3800(02)00204-1

Guisan, 2006, Making better biogeographical predictions of species’ distributions, J. Appl. Ecol., 43, 386, 10.1111/j.1365-2664.2006.01164.x

Halvorsen, 2013, A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling, Sommerfeltia, 36, 1, 10.2478/v10208-011-0016-2

Hannah, 2011

Hao, 2019, A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD, Divers. Distrib., 25, 839, 10.1111/ddi.12892

Hastie, 2004, Generalized additive models

Hastie, 1994, Flexible discriminant analysis by optimal scoring, J. Am. Stat. Assoc., 89, 1255, 10.1080/01621459.1994.10476866

Hefley, 2016, Hierarchical species distribution models, Curr. Landscape. Ecol. Rep., 1, 87, 10.1007/s40823-016-0008-7

Hijmans, 2013, Species distribution modeling with R, Encycl. Biodivers., 6

Hijmans, 2006, The ability of climate envelope models to predict the effect of climate change on species distributions, Glob. Chang. Biol., 12, 2272, 10.1111/j.1365-2486.2006.01256.x

Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276

Hijmans

Hoath, 2003

Jarnevich, 2015, 65

Kaky, 2020, Potential habitat suitability of Iraqi amphibians under climate change, Biodiversitas, 21, 731, 10.13057/biodiv/d210240

Kaky, 2016, Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants, J. Arid Environ., 135, 140, 10.1016/j.jaridenv.2016.09.001

Kaky, 2017, Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change, PLoS One, 12, e0187714, 10.1371/journal.pone.0187714

Kaky, 2019, Allowing for human socioeconomic impacts in the conservation of plants under climate chang, Plant Biosyst., 154, 295, 10.1080/11263504.2019.1610109

Kaky, 2019, Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria, J. Arid Environ., 170, 103988

Khanum, 2013, Predicting impacts of climate change on medicinal asclepiads of Pakistan using MaxEnt modeling, Acta Oecol., 49, 23, 10.1016/j.actao.2013.02.007

Kharouba, 2013, Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models, Ecography, 36, 657, 10.1111/j.1600-0587.2012.07683.x

Ko, 2016, The limits of direct community modeling approaches for broad-scale predictions of ecological assemblage structure, Biol. Conserv., 201, 396, 10.1016/j.biocon.2016.07.026

Latimer, 2006, Building statistical models to analyze species distributions, Ecol. Appl., 16, 33, 10.1890/04-0609

Liu, 2011, Measuring and comparing the accuracy of species distribution models with presence–absence data, Ecography, 34, 232, 10.1111/j.1600-0587.2010.06354.x

Mahmoud, 2013, Traditional knowledge and use of medicinal plants in the Eastern Desert of Egypt: a case study from Wadi El-Gemal National Park, J. Med. Plants Stud., 1, 10

Marmion, 2009, Evaluation of consensus methods in predictive species distribution modelling, Divers. Distrib., 15, 59, 10.1111/j.1472-4642.2008.00491.x

Marquardt, 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591, 10.2307/1267205

Martínez-Meyer, 2005, Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions, Biodivers. Inform., 2, 42, 10.17161/bi.v2i0.8

McCullagh, 1989

Merckx, 2011, Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling, Ecol. Model., 222, 588, 10.1016/j.ecolmodel.2010.11.016

Merow, 2013, A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058, 10.1111/j.1600-0587.2013.07872.x

Monk, 2010, Habitat suitability for marine fishes using presence-only modelling and multibeam sonar, Mar. Ecol. Prog. Ser., 420, 157, 10.3354/meps08858

Morales, 2017, MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review, PeerJ, 5, 10.7717/peerj.3093

Naimi, 2016, sdm: a reproducible and extensible R platform for species distribution modelling, Ecography, 39, 368, 10.1111/ecog.01881

Newbold, 2010, Testing the accuracy of species distribution models using species records from a new field survey, Oikos, 119, 1326, 10.1111/j.1600-0706.2009.18295.x

Norberg, 2019, A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels, Ecol. Monogr., 89, 10.1002/ecm.1370

Oppel, 2012, Comparison of five modeling techniques to predict the spatial distribution and abundance of seabirds, Biol. Conserv., 156, 94, 10.1016/j.biocon.2011.11.013

Pearson, 2003, Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?, Glob. Ecol. Biogeogr., 12, 361, 10.1046/j.1466-822X.2003.00042.x

Peterson, 2011

Phillips, 2008, Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 31, 161, 10.1111/j.0906-7590.2008.5203.x

Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026

Pollock, 2014, Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM), Methods Ecol. Evol., 5, 397, 10.1111/2041-210X.12180

Urban, 2016, Improving the forecast for biodiversity under climate change, Science, 353, 10.1126/science.aad8466

van Proosdij, 2015, Minimum required number of specimen records to develop accurate species distribution models, Ecography, 38, 001

R Core Team, 2014

Reiss, 2011, Species distribution modelling of marine benthos: a North Sea case study, Mar. Ecol. Prog. Ser., 442, 71, 10.3354/meps09391

Royle, 2012, Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions, Methods Ecol. Evol., 3, 545, 10.1111/j.2041-210X.2011.00182.x

Saupe, 2011, Tracking a medically important spider: climate change, ecological niche modeling, and the Brown recluse (Loxosceles reclusa), PLoS One, 6, 10.1371/journal.pone.0017731

Schoener, 1968, Anolis lizards of Bimini: resource partitioning in a complex fauna, Ecology, 49, 704, 10.2307/1935534

Segurado, 2004, An evaluation of methods for modelling species distributions, J. Biogeogr., 31, 1555, 10.1111/j.1365-2699.2004.01076.x

Stohlgren, 2010, Ensemble habitat mapping of invasive plant species, Risk Anal., 30, 224, 10.1111/j.1539-6924.2009.01343.x

Svenning, 2011, Applications of species distribution modeling to paleobiology, Quat. Sci. Rev., 30, 2930, 10.1016/j.quascirev.2011.06.012

Svetnik, 2003, Random forest: a classification and regression tool for compound classification and QSAR modeling, J. Chem. Inf. Comput. Sci., 43, 1947, 10.1021/ci034160g

Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615

Thibaud, 2014, Measuring the relative effect of factors affecting species distribution model predictions, Methods Ecol. Evol., 5, 947, 10.1111/2041-210X.12203

Thuiller, 2003, BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change, Glob. Chang. Biol., 9, 1353, 10.1046/j.1365-2486.2003.00666.x

Thuiller, 2004, Effects of restricting environmental range of data to project current and future species distributions, Ecography, 27, 165, 10.1111/j.0906-7590.2004.03673.x

Vapnik, 1995

Vasconcelos, 2012, Species distribution modelling as a macroecological tool: a case study using New World amphibians, Ecography, 35, 539, 10.1111/j.1600-0587.2011.07050.x

Warren, 2008, Environmental niche equivalency versusconservatism: quantitative approaches to niche evolution, Evolution, 62, 2868, 10.1111/j.1558-5646.2008.00482.x

Warren, 2010, ENMTools: a toolbox for comparative studies of environmental niche models, Ecography, 30, 607, 10.1111/j.1600-0587.2009.06142.x

Warton, 2015, So many variables: joint modeling in community ecology, Trends Ecol. Evol., 30, 766, 10.1016/j.tree.2015.09.007

Wayne, 2013

Wisz, 2008, Effects of sample size on the performance of species distribution models, Divers. Distrib., 14, 763, 10.1111/j.1472-4642.2008.00482.x

Wright, 2016, Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians, Clim. Chang., 134, 579, 10.1007/s10584-015-1552-6

Yackulic, 2013, Presence-only modelling using MAXENT: when can we trust the inferences?, Methods Ecol. Evol., 4, 236, 10.1111/2041-210x.12004

Yi, 2016, MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China, Ecol. Eng., 92, 260, 10.1016/j.ecoleng.2016.04.010

Zaniewski, 2002, Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns, Ecol. Model., 157, 261, 10.1016/S0304-3800(02)00199-0

Zhang, 2012, Using species distribution modeling to improve conservation and land use planning of Yunnan, China, Biol. Conserv., 153, 257, 10.1016/j.biocon.2012.04.023

Zhang, 2018, MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change, Sci. Total Environ., 634, 1326, 10.1016/j.scitotenv.2018.04.112

Zhao, 2018, Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don, Plant Biosyst., 152, 349, 10.1080/11263504.2017.1289273

Zimmermann, 2010, New trends in species distribution modelling, Ecography, 33, 985, 10.1111/j.1600-0587.2010.06953.x

Zurada, 1992