A comparative study of two different finite difference methods for solving advection–diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes

Ricerche di Matematica - Tập 71 Số 1 - Trang 245-252 - 2022
Svetislav Savović1, Branko Drljača2, Alexandar Djordjevich3
1Faculty of Science, University of Kragujevac, R. Domanovića 12, Kragujevac, Serbia
2University of Priština in Kosovska Mitrovica, Faculty of Sciences and Mathematics, Kosovska Mitrovica, Serbia
3City University of Hong Kong, Kowloon, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shih, T.M.: Numerical Heat Transfer. Springer, Berlin (1984)

Savović, S., Caldwell, J.: Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method. Thermal Sci. 13, 165–174 (2009)

Savović, S., Simović, A., Djordjevich, A.: Explicit finite difference solution of the power flow equation in W-type optical fibers. Opt. Laser Technol. 44, 1786–1790 (2012)

Murray, J.D.: Mathematical Biology I. Springer, Berlin (2002)

Bear, J.: Hydraulics of Groundwater. Dover, Minneola (2007)

Savović, S., Djordjevich, A., Ristić, G.: Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings. Rad. Prot. Dosim. 150, 213–216 (2012)

Savović, S., Djordjevich, A.: Numerical solution for temporally and spatially dependent solute dispersion of pulse type input concentration in semi-infinite media. Int. J. Heat Mass Transf. 60, 291–295 (2013)

Hetrick, D.K.: Dynamics of Nuclear Reactors. University of Chicago, Chicago (1971)

Urošević, V., Nikezić, D.: Radon transport through concrete and determination of its diffusion coefficient. Radiat. Prot. Dosim. 104, 65–70 (2003)

Djordjevich, A., Savović, S.: Numerical solution of the power flow equation in step index plastic optical fibers. J. Opt. Soc. Am. B 21, 1437–1442 (2004)

Chen-Charpentier, B.M., Kojouharov, H.V.: An unconditionally positivity preserving scheme for advection–diffusion reaction equations. Math. Comput. Model. 57, 2177–2185 (2013)

Quang, D.A., Ehrhardt, M.: Adequate numerical solution of air pollution problems by positive difference schemes on unbounded domains. Math. Comput. Model. 44, 834–856 (2006)

Liu, L., Clemence, D.P., Mickens, R.E.: A nonstandard finite difference scheme for contaminant transport with kinetic Langmuir sorption. Numer. Methods Part. D. E. 27, 767–785 (2011)

Anderson, J.D.: Computational Fluid Dynamics. McGraw-Hill, New York (1995)

Mphephu, N.: Numerical Solution of 1-D Convection-Diffusion-Reaction Equation. Master Thesis, University of Pretoria, South Africa, 25 October 2013.

Djordjevich, A., Savović, S.: Solute transport with longitudinal and transverse diffusion in temporally and spatially dependent flow from a pulse type source. Int. J. Heat Mass Transf. 65, 321–326 (2013)