Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu so sánh ba phương pháp số để giải phương trình tích phân vi phân kiểu Atangana–Baleanu được định nghĩa theo nghĩa Caputo
Tóm tắt
Nghiên cứu này chứa các phương pháp số bao gồm phương pháp Tuyến tính, phương pháp Bậc hai và phương pháp Bậc hai-tuyến tính để giải một phương trình tích phân vi phân phân số sử dụng đạo hàm Atangana–Baleanu được định nghĩa theo nghĩa Caputo. Ranh giới sai số của các phương pháp được thu được. Chúng tôi thảo luận về bốn ví dụ thử nghiệm để thực hiện các mô phỏng số và kết quả số thu được đảm bảo rằng các phương pháp trình bày hoạt động tốt và nghiệm gần đúng thu được phù hợp với nghiệm phân tích. Độ hội tụ và sai số tuyệt đối cực đại của các phương pháp được tính toán và hiệu suất so sánh của chúng được thảo luận.
Từ khóa
#phương pháp số #phương trình tích phân vi phân #phân số #đạo hàm Atangana–Baleanu #nghĩa CaputoTài liệu tham khảo
Agrawal OP, Hasan MM, Tangpong X (2012) A numerical scheme for a class of parametric problem of fractional variational calculus. J Comput Nonlinear Dyn 7(2):021005
Alkahtani BST, Koca İ, Atangana A (2017) Analysis of a new model of h1n1 spread: model obtained via Mittag–Leffler function. Adv Mech Eng 9(8):1687814017705566
Araújo A, Branco J, Ferreira J (2009) On the stability of a class of splitting methods for integro-differential equations. Appl Numer Math 59(3–4):436–453
Arqub OA, Maayah B (2019) Fitted fractional reproducing kernel algorithm for the numerical solutions of abc-fractional volterra integro-differential equations. Chaos Solitons Fractals 126:394–402. https://doi.org/10.1016/j.chaos.2019.07.023
Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408
Ávalos-Ruiz L, Gómez-Aguilar J, Atangana A, Owolabi KM (2019) On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory. Chaos Solitons Fractals 127:364–388
Baskonus H, Mekkaoui T, Hammouch Z, Bulut H (2015) Active control of a chaotic fractional order economic system. Entropy 17(8):5771–5783
Baskonus HM, Bulut H (2016) Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conference Proceedings, vol 1738, AIP Publishing, p. 290004
Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):1–13
Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111:190–194
Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via he’s variational iteration technique. Int J Numer Methods Biomed Eng 26(6):705–715
Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, Berlin
Evirgen F, Özdemir N (2011) Multistage adomian decomposition method for solving nlp problems over a nonlinear fractional dynamical system. J Comput Nonlinear Dyn 6(2):021003
Ghanbari B, Atangana A (2019) A new application of fractional Atangana-Baleanu derivatives: designing abc-fractional masks in image processing. Stat Mech Appl Phys A 542:123516
Gitterman M, Steinberg V (1980) Memory effects in the motion of a suspended particle in a turbulent fluid. Phys Fluids 23(11):2154–2160
Hilfer R et al (2000) Applications of fractional calculus in physics, vol 35. World scientific, Singapore
Hossain ME (2016) Numerical investigation of memory-based diffusivity equation: the integro-differential equation. Arab J Sci Eng 41(7):2715–2729
Huang L, Li XF, Zhao Y, Duan XY (2011) Approximate solution of fractional integro-differential equations by taylor expansion method. Comput Math Appl 62(3):1127–1134
Jarad F, Abdeljawad T, Hammouch Z (2018) On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117:16–20
Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam
Koca I (2017) Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int J Optim Control Theories Appl (IJOCTA) 8(1):17–25
Kumar K, Pandey RK, Sharma S (2017) Comparative study of three numerical schemes for fractional integro-differential equations. J Comput Appl Math 315:287–302
Kumar K, Pandey RK, Sharma S (2019) Approximations of fractional integrals and caputo derivatives with application in solving Abel’s integral equations. J King Saud Univ Sci 31(4):692–700
Magin RL (2006) Fractional calculus in bioengineering, vol 2. Begell House, Redding
Meng Z, Wang L, Li H, Zhang W (2015) Legendre wavelets method for solving fractional integro-differential equations. Int J Comput Math 92(6):1275–1291
Mittal R, Nigam R (2008) Solution of fractional integro-differential equations by adomian decomposition method. Int J Appl Math Mech 4(2):87–94
Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Amsterdam
Owolabi KM (2019) Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 122:89–101
Owolabi KM, Atangana A (2019) Computational study of multi-species fractional reaction-diffusion system with abc operator. Chaos Solitons Fractals 128:280–289
Owolabi KM, Atangana A (2019) Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative. Chaos Solitons Fractals 126:41–49
Owolabi KM, Atangana A (2019) On the formulation of Adams–Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems. Chaos Interdiscipl J Nonlinear Sci 29(2):023111
Owolabi KM, Hammouch Z (2019) Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative. Phys A Stat Mech Appl 523:1072–1090
Owolabi KM, Pindza E (2019) Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives. Chaos Solitons Fractals 127:146–157
Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, Amsterdam
Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67. https://doi.org/10.1115/1.3101682
Saadatmandi A, Dehghan M (2011) A legendre collocation method for fractional integro-differential equations. J Vib Control 17(13):2050–2058
Sharma S, Pandey RK, Kumar K (2018) Collocation method with convergence for generalized fractional integro-differential equations. J Comput Appl Math 342:419–430
Sharma S, Pandey RK, Kumar K (2019) Galerkin and collocation methods for weakly singular fractional integro-differential equations. Iran J Sci Technol Trans A Sci 43(4):1649–1656
Shukla AK, Pandey RK, Yadav S, Pachori RB (2020) Generalized fractional filter-based algorithm for image denoising. Circuits Syst Signal Process 39(1):363–390
Tarasov VE (2009) Fractional integro-differential equations for electromagnetic waves in dielectric media. Theor Math Phys 158(3):355–359
Yang C, Hou J (2013) Numerical solution of integro-differential equations of fractional order by Laplace decomposition method. Wseas Trans Math 12(12):1173–1183
Yang Q, Chen D, Zhao T, Chen Y (2016) Fractional calculus in image processing: a review. Fract Calculus Appl Anal 19(5):1222–1249