Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu so sánh về quần xã cá gần các môi trường nuôi trồng thủy sản, nhân tạo và tự nhiên
Tóm tắt
Môi trường sống đóng vai trò quan trọng trong việc điều tiết cấu trúc quần thể cá. Sử dụng dữ liệu thu được từ khảo sát lưới trammel hàng tháng tại quần đảo Ma’an ở bờ biển phía đông Trung Quốc, chúng tôi đã đánh giá tác động của năm môi trường sống khác nhau (rạn san hô nhân tạo, trang trại ngao, nuôi nhốt cá, rạn đá và đáy mềm) lên các quần xã cá. Nghiên cứu này cho thấy rằng các rạn san hô nhân tạo (AR) có độ phong phú về loài, sự phong phú và đa dạng sinh học cao hơn đáng kể so với các trang trại ngao (MF) hay đáy mềm (SB) trong hầu hết các mùa, và các nhóm cá trong môi trường AR tương tự như trong các môi trường rạn đá (RR). Hai kiểu quần xã cá khác nhau đã được phát hiện trong khu vực nghiên cứu sử dụng phương pháp phân tích lập độ không theo chỉ số: một quần xã chiếm ưu thế bởi các loài cá rạn (đặc biệt là các loài thuộc họ Scorpaenidae) ở môi trường AR, RR và các mô hình nuôi nhốt (CA), và một quần xã chiếm ưu thế bởi các loài thuộc họ Sciaenidae ở môi trường MF và SB. Chúng tôi đề xuất rằng các loài cá rạn đóng vai trò chủ chốt trong việc phân biệt cấu trúc quần thể cá trong khu vực nghiên cứu. Mặc dù có rất ít sự khác biệt về sự phong phú và đa dạng của cá giữa môi trường CA và SB, cấu trúc tuổi của cá trong môi trường CA cho thấy độ đa dạng cao hơn. Một quần xã cá phức tạp hơn và sự gia tăng dân số của các loài bản địa đã được thiết lập do sự xuất hiện của cả cấu trúc nhân tạo nổi và cố định, có thể thông qua cải thiện tỷ lệ sống sót.
Từ khóa
#quần xã cá #môi trường sống #rạn san hô nhân tạo #nuôi trồng thủy sản #đa dạng sinh họcTài liệu tham khảo
Acosta, A., 1997. Use of multi-mesh gillnets and trammel nets to estimate fish species composition in coral reef and mangroves in the southwest coast of Puerto Rico. Caribbean Journal of Science, 33: 45–57.
Addis, D. T., Patterson III, W. F., Dance, M. A., and Ingram Jr., G. W., 2013. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fisheries Research, 147: 349–358.
Ambrose, R. F., and Swarbrick, S. L., 1989. Comparison of fish assemblages on artificial and natural reefs off the coast of southern California. Bulletin of Marine Science, 44: 718–733.
Anderson, T. J., Syms, C., Roberts, D. A., and Howard, D. F., 2009. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organization and abundance of deep-water fish assemblages. Journal of Experimental Marine Biology and Ecology, 379: 34–42.
Araújo, F. G., Bailey, R. G., and Williams, W. P., 1999. Spatial and temporal variations in fish populations in the upper Thames Estuary. Journal of Fish Biology, 55: 836–853.
Baine, M., 2001. Artificial reefs: A review of their design, application, management and performance. Ocean and Coastal Management, 44: 241–259.
Bellwood, D. R., 1998. What are reef fishes?.-Comment on the report by D. R. Robertson: Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs, 17: 179–186.
Benaka, L., 1999. Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Bethesda, MD, USA, 480pp.
Beyst, B., Hostens, K., and Mees, J., 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research, 46: 281–294.
Bohnsack, J. A., 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioural preference?. Bulletin of Marine Science, 44: 631–645.
Bortone, S. A., Martin, T., and Bundrick, C. M., 1994. Factors affecting fish assemblage development on a modular artificial reef in a northern Gulf of Mexico estuary. Bulletin of Marine Science, 55: 319–332.
Bulleri, F., 2005. Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores. Marine Ecology Progress Series, 287: 53–65.
Burta, J. A., Feary, D. A., Cavalcante, G., Baumand, A. G., and Usseglio, P., 2013. Urban breakwaters as reef fish habitat in the Persian Gulf. Marine Pollution Bulletin, 72: 342–350.
Campbell, M. D., Rose, K., Boswell, K., and Cowan, J., 2011. Individual-based modeling of an artificial reef fish community: Effects of habitat quantity and degree of refuge. Ecological Modelling, 222: 3895–3909.
Carr, M. H., and Hixon, M. A., 1997. Artificial reefs: The importance of comparisons with natural reefs. Fisheries, 22: 28–33.
Clarke, K. R., and Gorley, R. N., 2001. PRIMER v5: User manual/tutorial. PRIMER-E, Plymouth UK, 91pp.
Clynick, B. G., Chapman, M. G., and Underwood, A. J., 2008a. Fish assemblages associated with urban structures and natural reefs in Sydney, Australia. Austral Ecology, 33: 140–150.
Clynick, B. G., McKindsey, C. W., and Archambault, P., 2008b. Distribution and productivity of fish and macroinvertebrates in mussel aquaculture sites in the Magdalen islands (Québec, Canada). Aquaculture, 283: 203–210.
DeMartini, E. E., Barnett, A. M., Johnson, T. D., and Ambrose, R. F., 1994. Growth and production estimates for biomass dominant fishes on a southern California artificial reef. Bulletin of Marine Science, 55: 484–500.
Dempster, T., Sanchez-Jerez, P., Uglemd, I., and Bjørn, P.-A., 2010. Species-specific patterns of aggregation of wild fish around fish farms. Estuarine, Coastal and Shelf Science, 86: 271–275.
Dorenbosch, M., Grol, M. G. G., Nagelkerken, I., and Van der Velde, G., 2006. Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Garibbean rainbow parrotfish, Scarus guacamaia. Biological Conservation, 129: 277–282.
Duffy, J. M., 1987. A review of the San Diego Bay stripied mullet, Mugil cephalus, fishery. California Department of Fish and Game. Marine Research Technical Report, 56:1–10.
Fabi, G., Grati, F., Puletti, M., and Scarcella, G., 2004. Effects of fish community induced by installation of two gas platforms in the Adriatic Sea. Marine Ecology Progress Series, 273: 187–197.
Fernández, T. V., Anna, G. D., Badalamenti, F., and Pérez-Ruzafa, A., 2009. Effect of simulated macroalgae on the fish assemblage associated with a temperate reef system. Journal of Experimental Marine Biology and Ecology, 376: 7–16.
Fogarty, M. J., 1999. Essential habitat, marine reserves and fishery management. Trends in Ecology and Evolution, 14: 133–134.
França, S., Costa, M. J., and Cabral, H. N., 2009. Assessing habitat specific fish assemblages in estuaries along the Portuguese coast. Estuarine, Coastal and Shelf Science, 83: 1–12.
Fraschetti, S., Terlizze, A., and Boero, F., 2008. How many habitats are there in the sea (and where)?. Journal of Experimental Marine Biology and Ecology, 366: 109–115.
Gill, A. B., 2005. Offshore renewable energy: Ecological implications of generating electricity in the coastal zone. Journal of Applied Ecology, 42: 605–615.
Hajisamae, S., and Chou, L. M., 2003. Do shallow water habitats of an impacted coastal strait serve as nursery grounds for fish?. Estuarine, Coastal and Shelf Science, 56: 281–290.
Hansson, S., Hjerne, O., Harvey, C., Kitchell, J. F., Cox, S. P., and Essington, T. E., 2007. Managing Baltic Sea fisheries under contrasting production and predation regimes: Ecosystem model analyses. AMBIO: A Journal of the Human Environment, 36: 265–271.
James, L. B., 1988. Effects of kelp forest removal on associated fish assemblages in central California. Journal of Experimental Marine Biology and Ecology, 117: 227–238.
Johan, S., Leif, P., and Håkan, W., 2007. Food utilization by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: Inference for identification of essential fish habitats. Estuarine, Coastal and Shelf Science, 71: 593–607.
Leber, K. M., Kitada, S., Blankenship, H. L., and Svasand, T., 2004. Stock Enhancement and Sea Ranching. Blackwell Publishing Ltd., UK, 576pp.
Machias, A., Karakassis, I., Labropoulou, M., Somarakis, S., Papadopoulou, K. N., and Papaconstantinou, C., 2004. Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine ecosystem. Estuarine, Coastal and Shelf Science, 60: 771–779.
Martin, S., Alfred, S., Antti, L., Johanna, M., Kajsa, R., and Lauri, U., 2009. Fish assemblages in coastal lagoons in landuplift succession: The relative importance of local and regional environmental gradients. Estuarine, Coastal and Shelf Science, 81: 247–256.
Masuda, R., Shiba, M., Yamashita, Y., Ueno, M., Kai, Y., Nakanishi, A., Torikoshi, M., and Tanaka, M., 2010. Fish assemblages associated with three types of artificial reefs: Density of assemblages and possible impacts on adjacent fish abundance. Fishery Bulletin, 108: 162–173.
Morrisey, D. J., Cole, R. G., Davey, N. K., Handley, S. J., Bradley, A., Brown, S. N., and Madarasz, A. L., 2006. Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture, 252: 277–288.
Murdoch, T. J. T., Glasspool, A. F., Outerbridge, M., Ward, J., Manuel, S., Gray, J., Nash, A., Coates, K. A., Pitt, J., Fourqurean, J. W., Barnes, P. A., Vierros, M., Holzer, K., and Smith, S. R., 2007. Large-scale decline in offshore seagrass meadows in Bermuda. Marine Ecology Progress Series, 339: 123–130.
Nagelkerken, I., van der Velde, G., Gorissen, M. W., Meijer, G. J., van’t Hof, T., den Johan, S., Leif, P., and Håkan, W., 2007. Food utilization by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: Inference for identification of essential fish habitats. Estuarine, Coastal and Shelf Science, 71: 593–607.
Ogawa, R., 1973. Various biological questions regarding artificial reefs. Ocean Age, 3: 21–30.
Olin, M., Kurkilahti, M., Peitola, P., and Ruuhijärvi, J., 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fisheries Research, 68: 135–147.
Perkol-Finkel, S., Zilman, G., Sella, I., Miloh, T., and Benayahu, Y., 2008. Floating and fixed artificial habitats: Spatial and temporal patterns of benthic communities in a coral reef environment. Estuarine, Coastal and Shelf Science, 77: 491–500.
Pickering, H., and Whitmarsh, D., 1997. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’ debate, the influence of design and its significance for policy. Fisheries Research, 31: 39–59.
Pizzolon, M., Cenci, E., and Mazzoldi, C., 2008. The onset of fish colonization in a coastal defence structure (Chioggia, Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 78: 166–178.
Polovina, J. J., 1994. Function of artificial reefs. Bulletin of Marine Science, 55: 1349.
Relini, G., Relini, M., Palandri, G., Merello, S., and Beccornia, E., 2007. History, ecology and trends for artificial reefs of the Ligurian Sea, Italy. Hydrobiologia, 580: 193–217.
Rilov, G., and Benayahu, Y., 2000. Fish assemblages on natural versus vertical artificial reefs: The rehabilitation perspective. Marine Biology, 136: 931–942.
Rybicki, J., and Hanski, I., 2013. Sepecies-area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters, 16: 27–38.
San Diego-McGlone, M. L., Azanza, R. V., Villanoy, C. L., and Jacinto, G. S., 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Marine Pollution Bulletin, 57: 295–301.
Santos, M. N., and Monteiro, C. C., 1997. The Olhão artificial reef system (south Portugal): Fish assemblages and fishing yield. Fisheries Research, 30: 33–41.
Santos, M. N., and Monteiro, C. C., 1998. Comparison of the catch and fishing yield from an artificial reef system and neighbouring areas off Faro (Algarve, south Portugal). Fisheries Research, 39: 55–65.
Sebens, K. P., 1991. Habitat structure and community dynamics in marine benthic systems. In: Habitat Structure: The Physical Arrangement of Objects in Space. Bell, S. S., et al., eds., Chapman and Hall, New York, 211pp.
Sih, A., Jonsson, B. G., and Luikart, G., 2000. Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology and Evolution, 15: 132–134.
Simon, T., Pinheiro, H. T., and Joyeux, J. C., 2011. Target fishes on artificial reefs: Evidences of impacts over nearby natural environments. Science of the Total Environment, 409: 4579–4584.
Stanley, D. A., and Wilson, C. A., 2000. Variation in the density and species composition of fishes associated with three petroleum platforms using dual beam hydroacoustics. Fisheries Research, 47: 161–172.
Stone, R. B., Pratt, H. L., Parker, R. O., and Davis Jr., G. E., 1979. A comparison of fish populations on an artificial and natural reef in the Florida Keys. Marine Fisheries Review, 41: 1–11.
Sudirman, H. H., Jompa, J., Iswahyudin, Z., and McKinnon, A. D., 2009. Wild fish associated with tropical sea cage aquaculture in South Sulawesi, Indonesia. Aquaculture, 286: 233–239.
Theodorou, J. A., Sorgeloos, P., Adams, C. M., Viaene, J., and Tzovenis, I., 2010. Optimal farm sie for the production of the mediterranean mussel (Mytilus galloprovinalis) in Greece. IIFET 2010 Montpellier Proceedings, 6pp.
Valle, C., Bayle-Sempere, J. T., Dempster, T., Sanchez-Jerez, P., and Gimenez-Casalduero, F., 2007. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the south-western Mediterranean Sea. Estuarine, Coastal and Shelf Science, 72: 299–307.
Walker, B. K., Henderson, B., and Spieler, R. E., 2002. Fish assemblages associated with artificial reefs of concrete aggregates or quarry stone offshore Miami Beach, Florida, USA. Aquatic Living Resources, 15: 95–105.
Wang, Z. H., Zhang, S. Y., and Wang, K., 2010. Fish and macroinvertebrates community structure in artificial habitat around Sanheng Isle, Shengsi, China. Acta Ecologica Sinica, 30: 2026–2035 (in Chinese).
