Nghiên cứu so sánh về quá trình polymer hóa etylen bằng các chất xúc tác bis(aminotropone) Ti

Polymer Bulletin - Tập 68 - Trang 755-773 - 2011
Mohammad Taghi Goldani1, Reza Sandaroos2, Ali Mohmmadi1, Maryam Goharjoo1
1Islamic Azad University, Birjand, Iran
2Department of Chemistry, Faculty of Science, Birjand University, Birjand, Iran

Tóm tắt

Một loạt các phức hợp titan aminotropone có cặp ligand chelating [O–N] đã được tổng hợp và sử dụng thành công trong quá trình polymer hóa etylen. Các phản ứng polymer hóa etylen đã được thực hiện dưới các điều kiện khác nhau bằng cách sử dụng các chất xúc tác đã chuẩn bị. Hoạt động polymer hóa etylen phụ thuộc rõ rệt vào cấu trúc của chất xúc tác. Hoạt động polymer hóa tăng lên với sự gia tăng cả áp suất monomer và tỷ lệ [MAO]:[Ti]. Hoạt động cao nhất của các chất xúc tác đạt được ở khoảng 30–40 °C. Điều này cho thấy, trái với các chất xúc tác Ti–FI hiệu suất cao, các chất xúc tác bis(aminotropone) Ti không yêu cầu sự hiện diện của khối lượng steric gần kề với nhóm oxy. Việc giới thiệu thay thế alkyl cồng kềnh bên cạnh nhóm oxy làm giảm hoạt động của các chất xúc tác. Các nghiên cứu về Lý thuyết chức năng mật độ (DFT) cho thấy các loài hoạt tính phát sinh từ những chất xúc tác này thường sở hữu tính điện tích cao hơn so với những loài được sản xuất từ các chất xúc tác bis(phenoxy-imine) Ti (các chất xúc tác Ti–FI). Hydro được sử dụng làm tác nhân chuyển chuỗi. Hoạt động của các chất xúc tác tăng lên với nồng độ hydro ở một mức độ nào đó, nhưng giá trị Mv của các polymer thu được lại giảm. Tính tinh thể và nhiệt độ nóng chảy của polymer thu được nằm trong khoảng 42–62% và 102–124 °C, tương ứng. Áp suất cao hơn làm tăng cả tính tinh thể và giá trị Mv của các polymer thu được. Chất xúc tác 8a cũng sản xuất PE với độ phân bố hẹp gần như (1,10–2,55) như là đặc trưng cho các chất xúc tác một vị trí. Tuy nhiên, PDI đã tăng rộng theo thời gian.

Từ khóa

#polymer hóa etylen #bis(aminotropone) #chất xúc tác titan #lý thuyết chức năng mật độ #hoạt động xúc tác #polymer

Tài liệu tham khảo

Ziegler K, Holzkamp E, Breil H, Martin H (1955) Das Mülheimer Normaldruck-Polyäthylen-Verfahren. Angew Chem 67:541–547 Kaminsky W (1999) Metalorganic catalysts for synthesis and polymerization. Springer, Heidelberg Bennett AMA, Schiffino RS (2000) Developing novel commercially viable catalysts for ethylene polymerization. Polym Prep Am Chem Soc Div Polym Chem 41(1):403–404 Britovsek GJP, Gibson VC, Kimberley BS, Mastroianni S, Redshaw C, Solan GA, White AJP, Williams DJ (2001) Bis(imino)pyridyl iron and cobalt complexes: the effect of nitrogen substituents on ethylene oligomerisation and polymerisation. J Chem Soc Dalton Trans (10):1639–1644 Fujita T, Tohi Y, Mitani M, Matsui S, Saito J, Nitabaru M, Sugi K, Makio H, Tsutsui T (Mitsui Chemicals, Inc.) (1998) Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and alpha-olefin/conjugated diene copolymers. Eur Patent 0874005 Goux J, Gendre PL, Richard P Moïse C (2006) Bimetallic complexes with ruthenium and tantalocene moieties: synthesis and use in a catalytic cyclopropanation reaction. J Organomet Chem 691(15):3239–3244 Zhang H, Katao S, Nomura K, Huang J (2007) Synthesis of half-titanocenes containing phenoxy-imine ligands and their use as catalysts for olefin polymerization. Organometallics 26(24):5967–5977 Alt HG, Köppl A (2000) Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem Rev 100(4):1205–1221 Chen EYX, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem Rev 100(4):1391–1434 McKnight AL, Waymouth RM (1998) Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem Rev 98(7):2587–2598 Suhm J, Heinemann J, Wörner C, Müller P, Stricker F, Kressler J, Okuda J, Mülhaupt R (1998) Novel polyolefin materials via catalysis and reactive processing. Macromol Symp 129:1–28 Ishii SI, Saito J, Mitani M, Mohri JI, Matsukawa N, Tohi Y, Matsui S, Kashiwa N, Fujita T (2002) Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands. J Mol Catal A 179(1–2):11–16 Liu H-R, Gomes PT, Costa SI, Duarte MT, Branquinho R, Fernandes AC, Chien JCW, Singh RP, Marques MM (2005) Highly active new α-diimine nickel catalyst for the polymerization of α-olefins. Organomet Chem 690(5):1314–1323. http://www.scopus.com/record/display.url?eid=2-s2.0-14144251759&origin=resultslist&sort=plf-f&src=s&st1=Liu+H-R&nlo=&nlr=&nls=&sid=fvIj2PyIrLsgFjPPXU1NRIC%3a610&sot=b&sdt=sisr&sl=18&s=FIRSTAUTH%28Liu+H-R%29&ref=%28Gomes%29&relpos=0&relpos=0&searchTerm=(FIRSTAUTH(Liu%20H-R))%20AND%20(Gomes) Noor A, Kretschmer WP, Glatz G, Kempe R (2011) Highly active titanium-based olefin polymerization catalysts bearing bulky aminopyridinato ligands. Inorg Chem 50(10):4598–4606 Oakes DCH, Gibson VC, White AJP, Williams DJ (2006) Highly active titanium-based olefin polymerization catalysts supported by bidentate phenoxyamide ligands. Inorg Chem 45(9):3476–3477 Popeney C, Guan Z (2005) Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 24(6):1145–1155 Zohuri GH, Damavandi S, Sandaroos R, Ahmadjo S (2010) Highly active FI catalyast of bis[N-3,5-dicumylsalicylidene) cyclohexylaminato]-zirconium(IV) dichloride for polymerization of Ethylene. Iran Polym J (English Edition) 19(9):679–687 Zohuri GH, Seyedi SM, Sandaroos R, Damavandi S, Mohammadi A (2010) Novel late transition metal catalysts based on iron: synthesis, structures and ethylene polymerization. Catal Lett 140(3–4):160–166 Chiang R (1959) Comments on intrinsic viscosity–weight-average molecular weight relationships for polyethylene. J Polym Sci 36:91–103 Murtuza S, Casagrande OL Jr, Jordan RF (2001) Olefin polymerization by Tris(pyrazolyl)borate Titanium catalysts. Polym Mater Sci Eng 84:109–110 Stephan DW, Guérin F, Spence REVH, Koch L, Gao X, Brown SJ, Swabey JW, Wang Q, Xu W, Zoricak P, Harrison DG (1999) Remarkably active non-metallocene ethylene polymerization catalysts. Organometallics 18(11):2046–2047 Yoshida Y, Matsui S, Fujita T (2005). Bis(pyrrolide-imine) Ti complexes with MAO: a new family of high performance catalysts for olefin polymerization. J Organomet Chem 690(20 Spec. Issue):4382–4397 Houghton J, Simonovic S, Whitwood AC, Douthwaite RE, Carabineiro SA, Yuan JC, Marques MM, Gomes PT (2008) Transition-metal complexes of phenoxy-imine ligands modified with pendant imidazolium salts: synthesis, characterisation and testing as ethylene polymerisation catalysts. J Organomet Chem 693(4):717–724 Hicks FA, Jenkins JC, Brookhart M (2003) Synthesis and ethylene polymerization activity of a series of 2-anilinotropone-based neutral nickel(II) catalysts. Organometallics 22(17):3533–3545 Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York, p VII 1-3 Justino J, Dias AR, Ascenso J, Marques MM, Tait PJT (1997) Polymerization of ethylene using metallocene and aluminoxane systems. Polym Int 44(4):407–412 Peacock A (2000) Handbook of polyethylene: structures properties and applications. Marcel Dekker Inc, New York, p 57 Zohuri G, Bonakdar MA, Damavandi S, Eftekhar M, Askari M, Ahmadjo S (2009) Preparation of ultra high molecular weight polyethylene using bi-supported sio2/mgcl2 (spherical)/ticl4 catalyst: a morphological study. Iran Polym J 18(7):593–600 Piettre SR, André C, Chanal MC, Ducep JB, Lesur B, Piriou F, Raboisson P, Rondeau JM, Schelcher C, Zimmermann P, Ganzhorn AJ (1997) Monoaryl- and bisaryldihydroxytropolones as potent inhibitors of inositol monophosphatase. J Med Chem 40(26):4208–4221 Echavarren AM, Stille JK (1988) Palladium-catalyzed carbonylative coupling of aryl triflates with organostannanes. J Am Chem Soc 110(5):1557–1565 Kirchhoff JH, Netherton MR, Hills ID, Fu GC (2002) Boronic acids: new coupling partners in room-temperature suzuki reactions of alkyl bromides. Crystallographic characterization of an oxidative-addition adduct generated under remarkably mild conditions. J Am Chem Soc 124(46):13662–13663 Kuran W (2001) Principles of coordination polymerization. Wiley, New York, p 10 Makio H, Fujita T (2005) Propene polymerization with bis(phenoxy-imine) group 4 transition metal complexes. Bull Chem Soc Jpn 78(1):52–66 Mitani M, Nakano T, Fujita T (2003) Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. Chem Eur J 9(11):2396–2403 Mitani M, Saito J, Ishii SI, Nakayama Y, Makio H, Matsukawa N, Matsui S, Mohri JI, Furuyama R, Terao H, Bando H, Tanaka H, Fujita T (2004) FI catalysts: new olefin polymerization catalysts for the creation of value-added polymers. Chem Record 4(3):137–158 Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Development of single-site new olefin polymerization catalyst systems using MgCl2-based activators: MAO-free MgCl2-supported FI catalyst systems. Bull Chem Soc Jpn 77(4):617–625 Bando H, Nakayama Y, Sonobe Y, Fujita T (2003) Bis(phenoxy-imine) Zr complexes/Et3Al/heteropoly compound catalyst systems for ethylene polymerization. Macromol Rapid Commun 24(12):732–736 Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Olefin polymerization behavior of bis(phenoxy-imine) Zr, Ti, and V complexes with MgCl2-based cocatalysts. J Mol Catal A 213(1):141–150 Nakayama Y, Bando H, Sonobe Y, Suzuki Y, Fujita T (2003) Highly active, thermally robust V-based new olefin polymerization catalyst system. Chem Lett 32(8):766–767 Saito J, Mitani M, Mohri J, Yoshida Y, Matsui S, Ishii S, Kojoh S, Kashiwa N, Fujita T (2001) Living polymerization of ethylene with a titanium complex containing two phenoxy-imine chelate ligands. Angew Chem Int Ed 40:2918–2920 Matsui S, Nitabaru M, Yoshida Y, Mitani M, Fujita T (2000) Olefin poylmerization catalyst and process for olefin polymerization. Europe Patent EP-1008595 Yoshida Y, Saito J, Mitani M, Fujita T (2004) Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and alpha-olefin/conjugated diene copolymers. Japanese Patent Mitani M, Tanaka H, Kojoh SI, Matsugi T, Kashiwa N, Fujita T, Mohri JI, Yoshida Y, Saito J, Ishii S, Tsuru K, Matsui S, Furuyama R, Nakano T (2002) Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J Am Chem Soc 124(13):3327–3336 Tamburlin-Thumin I, Crozet MP, Barriere JC (1999) A convenient method for the alkylation of tropolone derivatives and related α-keto hydroxy compounds. Synthesis 7:1149–1154 Derouane EG, Lemos F, Ferna AC (1999) Combinatorial catalysis and high throughput catalyst design and testing. Nato Science Series: C Mathematical and Physical Science Dos Santos JHZ, Da Rosa MB, Krug C, Stedile FC, Haag MC, Dupont J, Forte MDC (1999) Effects of ethylene polymerization conditions on the activity of SiO2-supported zirconocene and on polymer properties. J Polym Sci A 37(13):1987–1996 Mazzeo M, Lamberti M, Pappalardo D, Annunziata L, Pellecchia C (2009) Polymerization of α-olefins promoted by zirconium complexes bearing bis(phenoxy-imine) ligands with ortho-phenoxy halogen substituents. J Mol Catal A 297(1–2):9–17 Chen Y-X, Rausch MD, Chien JCW (1995) Heptane-soluble homogeneous zirconocene catalyst: synthesis of a single diastereomer, polymerization catalysis, and effect of silica supports. J Polym Sci A 33(13):2093–2108 Rieger B, Saunders Baugh L, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Zhang J, Wang X, Jin GX (2006) Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization. Coord Chem Rev 250(1–2):95–109