A comparative study of broadband solar absorbers with different gold metasurfaces and MgF2 on tungsten substrates

Vishal Sorathiya1, Sunil Lavadiya1, Ahmed Saeed AlGhamdi2, Osama S. Faragallah3, Hala S. El‐Sayed4, Mahmoud M. A. Eid5, Ahmed Nabih Zaki Rashed6
1Department of Information and Communication Technology, Marwadi University, Rajkot, India
2Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
3Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
4Department of Electrical Engineering, Faculty of Engineering, Menoufia University, Shebin El-kom, Egypt
5Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia
6Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–30 (2011). https://doi.org/10.1038/nphoton.2011.154

Cai, W., Shalaev, V.: Optical Metamaterials: Fundamentals and Applications. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1151-3

Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-120 (2012). https://doi.org/10.1002/adma.201200674

Yu, P., Yang, H., Chen, X., Yi, Z., Yao, W., Chen, J., et al.: Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 158, 227–35 (2020). https://doi.org/10.1016/j.renene.2020.05.142

Shen, X., Cui, T.J., Zhao, J., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401 (2011). https://doi.org/10.1364/oe.19.009401

Chen, H.-T.: Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165 (2012). https://doi.org/10.1364/OE.20.007165

Liu, H., Xie, M., Ai, Q., Yu, Z.: Ultra-broadband selective absorber for near-perfect harvesting of solar energy. J. Quant. Spectrosc. Radiat. Transf. 266, 107575 (2021). https://doi.org/10.1016/j.jqsrt.2021.107575

Roostaei, N., Mbarak, H., Monfared, S.A., Hamidi, S.M.: Plasmonic wideband and tunable absorber based on semi etalon nano structure in the visible region. Phys. Scr. 96, 035805 (2021). https://doi.org/10.1088/1402-4896/abdbf6

Huang, L., Chowdhury, D.R., Ramani, S., Reiten, M.T., Luo, S.-N., Taylor, A.J., et al.: Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154 (2012). https://doi.org/10.1364/OL.37.000154

Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7, 1–8 (2015). https://doi.org/10.1109/JPHOT.2014.2381633

Zhu, P., Jay, Guo L.: High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 101, 241116 (2012). https://doi.org/10.1063/1.4771994

Hossain, I., Samsuzzaman, M., Moniruzzaman, M., Bais, B.B., Singh, M.S.J., Islam, M.T.: Polarization-independent broadband optical regime metamaterial absorber for solar harvesting: a numerical approach. Chin. J. Phys. 71, 699–715 (2021). https://doi.org/10.1016/j.cjph.2021.04.007

Gokhale, V.J., Shenderova, O.A., McGuire, G.E., Rais-Zadeh, M.: Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 23, 191–7 (2014). https://doi.org/10.1109/JMEMS.2013.2266411

Deng, H., Li, Z., Stan, L., Rosenmann, D., Czaplewski, D., Gao, J., et al.: Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 40, 2592 (2015). https://doi.org/10.1364/OL.40.002592

Wang, B.-X., Xie, Q., Dong, G., Huang, W.-Q.: Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 30, 1115–8 (2018). https://doi.org/10.1109/LPT.2018.2834902

Biabanifard, S.: A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. J. Comput. Electron. 20, 38–48 (2021). https://doi.org/10.1007/s10825-020-01589-0

Soltani, M., Najafi, A., Chaharmahali, I., Biabanifard, S.: A configurable two-layer four-bias graphene-based THz absorber. J. Comput. Electron. 19, 719–35 (2020). https://doi.org/10.1007/s10825-020-01462-0

Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H., Mayer, T.S.: Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–24 (2014). https://doi.org/10.1021/nn4057148

Chen, Y., Liu, F., Liu, H., Yi, F., Zhou, H., Tan, X., et al.: Meander line nanoantenna absorber for subwavelength terahertz detection. IEEE Photonics J. 10, 1–9 (2018). https://doi.org/10.1109/JPHOT.2018.2843530

Yan, M., Dai, J., Qiu, M.: Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. 16, 025002 (2014). https://doi.org/10.1088/2040-8978/16/2/025002

Wang, H., Prasad Sivan, V., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L.: Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–42 (2015). https://doi.org/10.1016/j.solmat.2015.02.019

Clemens, S., Iskander, M.F., Yun, Z., Rayno, J.: Hybrid genetic programming for the development of metamaterials designs with improved characteristics. IEEE Antennas Wirel. Propag. Lett. 17, 513–6 (2018). https://doi.org/10.1109/LAWP.2018.2800057

Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–13 (2010). https://doi.org/10.1038/nmat2629

Xiong, F., Zhang, J., Zhu, Z., Yuan, X., Qin, S.: Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015). https://doi.org/10.1038/srep16998

Zhang, J., Tian, J., Li, L.: A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photonics J. 10, 1–12 (2018). https://doi.org/10.1109/JPHOT.2018.2815685

Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanović, I., Soljačić, M., et al.: A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–30 (2014). https://doi.org/10.1038/nnano.2013.286

Akimov, Y.A., Koh, W.S.: Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21, 235201 (2010). https://doi.org/10.1088/0957-4484/21/23/235201

Azad, A.K., Kort-Kamp, W.J.M., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., et al.: Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016). https://doi.org/10.1038/srep20347

Nieto-Nieto, L.M., Ferrer-Rodríguez, J.P., Muñoz-Cerón, E., Pérez-Higueras, P.: Experimental set-up for testing MJ photovoltaic cells under ultra-high irradiance levels with temperature and spectrum control. Measurement 165, 108092 (2020). https://doi.org/10.1016/j.measurement.2020.108092

Leitão, D., Torres, J.P.N., Fernandes, J.F.P.: Spectral irradiance influence on solar cells efficiency. Energies 13, 5017 (2020). https://doi.org/10.3390/en13195017

Brüggemann, D., Wolfrum, B., de Silva, J.P.: Fabrication, properties and applications of gold nanopillars. Handb. Nanomater. Prop. (2014). https://doi.org/10.1007/978-3-642-31107-9_55

Markelonis, A.R., Wang, J.S., Ullrich, B., Wai, C.M., Brown, G.J.: Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl. Nanosci. 5, 457–68 (2015). https://doi.org/10.1007/s13204-014-0338-x

Wen, Q.-Y., Zhang, H.-W., Xie, Y.-S., Yang, Q.-H., Liu, Y.-L.: Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009). https://doi.org/10.1063/1.3276072

Cinel, N.A., Bütün, S., Özbay, E.: Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 20, 2587 (2012). https://doi.org/10.1364/OE.20.002587

Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181 (2008). https://doi.org/10.1364/OE.16.007181

Gao, H., Peng, W., Chu, S., Cui, W., Liu, Z., Yu, L., et al.: Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8, 1038 (2018). https://doi.org/10.3390/nano8121038

Ke S, Wang B, Lu P. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. 2015 IEEE MTT-S Int Microw Work Ser Adv Mater Process RF THz Appl IEEE MTT-S IMWS-AMP 2015 - Proc 2015;23:4810–7. https://doi.org/10.1109/IMWS-AMP.2015.7325015.

Rufangura, P., Sabah, C.: Graphene-based wideband metamaterial absorber for solar cells application. J. Nanophotonics 11, 036008 (2017). https://doi.org/10.1117/1.jnp.11.036008

Avitzour, Y., Urzhumov, Y.A., Shvets, G.: Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009). https://doi.org/10.1103/PhysRevB.79.045131

Sang, T., Gao, J., Yin, X., Qi, H., Wang, L., Jiao, H.: Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res. Lett. 14, 105 (2019). https://doi.org/10.1186/s11671-019-2937-7

Liu, Z.Q., Shao, H.B., Liu, G.Q., Liu, X.S., Zhou, H.Q., Hu, Y., et al.: Λ 3/20000 Plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 104, 2–6 (2014). https://doi.org/10.1063/1.4867028

Liu, B., Tang, C., Chen, J., Xie, N., Tang, H., Zhu, X., et al.: Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res. Lett. 13, 153 (2018). https://doi.org/10.1186/s11671-018-2569-3

Wu, C., Avitzour, Y., Shvets, G.: Ultra-thin wide-angle perfect absorber for infrared frequencies. Metamater. Fundam. Appl. 7029, 70290W (2008). https://doi.org/10.1117/12.797208

Zhu, W., Zhao, X.: Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B 26, 2382 (2009). https://doi.org/10.1364/josab.26.002382

Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., et al.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 7, 330–4 (2012). https://doi.org/10.1038/nnano.2012.59

Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010)

Chen, J., Nie, H., Zha, T., Mao, P., Tang, C., Shen, X., et al.: Optical magnetic field enhancement by strong coupling in metamaterials. J. Light Technol. 36, 2791–5 (2018). https://doi.org/10.1109/JLT.2018.2822777

Pu, M., Hu, C., Wang, M., Huang, C., Zhao, Z., Wang, C., et al.: Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413 (2011). https://doi.org/10.1364/OE.19.017413

Wang, W., Yan, F., Tan, S., Zhou, H., Hou, Y.: Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 5, 571 (2017). https://doi.org/10.1364/prj.5.000571