A comparative study of broadband solar absorbers with different gold metasurfaces and MgF2 on tungsten substrates
Tóm tắt
Từ khóa
Tài liệu tham khảo
Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–30 (2011). https://doi.org/10.1038/nphoton.2011.154
Cai, W., Shalaev, V.: Optical Metamaterials: Fundamentals and Applications. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1151-3
Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-120 (2012). https://doi.org/10.1002/adma.201200674
Yu, P., Yang, H., Chen, X., Yi, Z., Yao, W., Chen, J., et al.: Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 158, 227–35 (2020). https://doi.org/10.1016/j.renene.2020.05.142
Shen, X., Cui, T.J., Zhao, J., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401 (2011). https://doi.org/10.1364/oe.19.009401
Chen, H.-T.: Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165 (2012). https://doi.org/10.1364/OE.20.007165
Liu, H., Xie, M., Ai, Q., Yu, Z.: Ultra-broadband selective absorber for near-perfect harvesting of solar energy. J. Quant. Spectrosc. Radiat. Transf. 266, 107575 (2021). https://doi.org/10.1016/j.jqsrt.2021.107575
Roostaei, N., Mbarak, H., Monfared, S.A., Hamidi, S.M.: Plasmonic wideband and tunable absorber based on semi etalon nano structure in the visible region. Phys. Scr. 96, 035805 (2021). https://doi.org/10.1088/1402-4896/abdbf6
Huang, L., Chowdhury, D.R., Ramani, S., Reiten, M.T., Luo, S.-N., Taylor, A.J., et al.: Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154 (2012). https://doi.org/10.1364/OL.37.000154
Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7, 1–8 (2015). https://doi.org/10.1109/JPHOT.2014.2381633
Zhu, P., Jay, Guo L.: High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 101, 241116 (2012). https://doi.org/10.1063/1.4771994
Hossain, I., Samsuzzaman, M., Moniruzzaman, M., Bais, B.B., Singh, M.S.J., Islam, M.T.: Polarization-independent broadband optical regime metamaterial absorber for solar harvesting: a numerical approach. Chin. J. Phys. 71, 699–715 (2021). https://doi.org/10.1016/j.cjph.2021.04.007
Gokhale, V.J., Shenderova, O.A., McGuire, G.E., Rais-Zadeh, M.: Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 23, 191–7 (2014). https://doi.org/10.1109/JMEMS.2013.2266411
Deng, H., Li, Z., Stan, L., Rosenmann, D., Czaplewski, D., Gao, J., et al.: Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 40, 2592 (2015). https://doi.org/10.1364/OL.40.002592
Wang, B.-X., Xie, Q., Dong, G., Huang, W.-Q.: Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 30, 1115–8 (2018). https://doi.org/10.1109/LPT.2018.2834902
Biabanifard, S.: A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. J. Comput. Electron. 20, 38–48 (2021). https://doi.org/10.1007/s10825-020-01589-0
Soltani, M., Najafi, A., Chaharmahali, I., Biabanifard, S.: A configurable two-layer four-bias graphene-based THz absorber. J. Comput. Electron. 19, 719–35 (2020). https://doi.org/10.1007/s10825-020-01462-0
Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H., Mayer, T.S.: Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–24 (2014). https://doi.org/10.1021/nn4057148
Chen, Y., Liu, F., Liu, H., Yi, F., Zhou, H., Tan, X., et al.: Meander line nanoantenna absorber for subwavelength terahertz detection. IEEE Photonics J. 10, 1–9 (2018). https://doi.org/10.1109/JPHOT.2018.2843530
Yan, M., Dai, J., Qiu, M.: Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. 16, 025002 (2014). https://doi.org/10.1088/2040-8978/16/2/025002
Wang, H., Prasad Sivan, V., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L.: Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–42 (2015). https://doi.org/10.1016/j.solmat.2015.02.019
Clemens, S., Iskander, M.F., Yun, Z., Rayno, J.: Hybrid genetic programming for the development of metamaterials designs with improved characteristics. IEEE Antennas Wirel. Propag. Lett. 17, 513–6 (2018). https://doi.org/10.1109/LAWP.2018.2800057
Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–13 (2010). https://doi.org/10.1038/nmat2629
Xiong, F., Zhang, J., Zhu, Z., Yuan, X., Qin, S.: Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015). https://doi.org/10.1038/srep16998
Zhang, J., Tian, J., Li, L.: A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photonics J. 10, 1–12 (2018). https://doi.org/10.1109/JPHOT.2018.2815685
Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanović, I., Soljačić, M., et al.: A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–30 (2014). https://doi.org/10.1038/nnano.2013.286
Akimov, Y.A., Koh, W.S.: Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21, 235201 (2010). https://doi.org/10.1088/0957-4484/21/23/235201
Azad, A.K., Kort-Kamp, W.J.M., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., et al.: Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016). https://doi.org/10.1038/srep20347
Nieto-Nieto, L.M., Ferrer-Rodríguez, J.P., Muñoz-Cerón, E., Pérez-Higueras, P.: Experimental set-up for testing MJ photovoltaic cells under ultra-high irradiance levels with temperature and spectrum control. Measurement 165, 108092 (2020). https://doi.org/10.1016/j.measurement.2020.108092
Leitão, D., Torres, J.P.N., Fernandes, J.F.P.: Spectral irradiance influence on solar cells efficiency. Energies 13, 5017 (2020). https://doi.org/10.3390/en13195017
Brüggemann, D., Wolfrum, B., de Silva, J.P.: Fabrication, properties and applications of gold nanopillars. Handb. Nanomater. Prop. (2014). https://doi.org/10.1007/978-3-642-31107-9_55
Markelonis, A.R., Wang, J.S., Ullrich, B., Wai, C.M., Brown, G.J.: Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl. Nanosci. 5, 457–68 (2015). https://doi.org/10.1007/s13204-014-0338-x
Wen, Q.-Y., Zhang, H.-W., Xie, Y.-S., Yang, Q.-H., Liu, Y.-L.: Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009). https://doi.org/10.1063/1.3276072
Cinel, N.A., Bütün, S., Özbay, E.: Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 20, 2587 (2012). https://doi.org/10.1364/OE.20.002587
Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181 (2008). https://doi.org/10.1364/OE.16.007181
Gao, H., Peng, W., Chu, S., Cui, W., Liu, Z., Yu, L., et al.: Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8, 1038 (2018). https://doi.org/10.3390/nano8121038
Ke S, Wang B, Lu P. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. 2015 IEEE MTT-S Int Microw Work Ser Adv Mater Process RF THz Appl IEEE MTT-S IMWS-AMP 2015 - Proc 2015;23:4810–7. https://doi.org/10.1109/IMWS-AMP.2015.7325015.
Rufangura, P., Sabah, C.: Graphene-based wideband metamaterial absorber for solar cells application. J. Nanophotonics 11, 036008 (2017). https://doi.org/10.1117/1.jnp.11.036008
Avitzour, Y., Urzhumov, Y.A., Shvets, G.: Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009). https://doi.org/10.1103/PhysRevB.79.045131
Sang, T., Gao, J., Yin, X., Qi, H., Wang, L., Jiao, H.: Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res. Lett. 14, 105 (2019). https://doi.org/10.1186/s11671-019-2937-7
Liu, Z.Q., Shao, H.B., Liu, G.Q., Liu, X.S., Zhou, H.Q., Hu, Y., et al.: Λ 3/20000 Plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 104, 2–6 (2014). https://doi.org/10.1063/1.4867028
Liu, B., Tang, C., Chen, J., Xie, N., Tang, H., Zhu, X., et al.: Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res. Lett. 13, 153 (2018). https://doi.org/10.1186/s11671-018-2569-3
Wu, C., Avitzour, Y., Shvets, G.: Ultra-thin wide-angle perfect absorber for infrared frequencies. Metamater. Fundam. Appl. 7029, 70290W (2008). https://doi.org/10.1117/12.797208
Zhu, W., Zhao, X.: Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B 26, 2382 (2009). https://doi.org/10.1364/josab.26.002382
Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., et al.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 7, 330–4 (2012). https://doi.org/10.1038/nnano.2012.59
Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010)
Chen, J., Nie, H., Zha, T., Mao, P., Tang, C., Shen, X., et al.: Optical magnetic field enhancement by strong coupling in metamaterials. J. Light Technol. 36, 2791–5 (2018). https://doi.org/10.1109/JLT.2018.2822777
Pu, M., Hu, C., Wang, M., Huang, C., Zhao, Z., Wang, C., et al.: Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413 (2011). https://doi.org/10.1364/OE.19.017413