A comparative study of blood endotoxin detection in haemodialysis patients
Tóm tắt
Endotoxemia is commonly reported in patients receiving haemodialysis and implicated in the pathogenesis of systemic inflammation. The Limulus Amoebocyte Lysate (LAL) assay is the most commonly used blood endotoxin detection assay. Two kinetic variations of the assay are commercially available – the turbidimetric and chromogenic assay, it is unknown which assay is superior for endotoxin detection in uremic patients. Selection of the optimum LAL technique for endotoxin detection in haemodialysis patients is important to further understanding of the sequela of endotoxemia and development of endotoxin-lowering strategies in this population. A turbidimetric and chromogenic LAL assay from the same manufacturer were directly compared. We investigated the ability of both LAL assays to detect endotoxin in uremic plasma. Plasma samples from haemodialysis patients and healthy controls were spiked with endotoxin and percentage spike recovery for the chromogenic and turbidimetric assay was determined. Assay accuracy and precision were compared between both LAL assays. The turbidimetric assay had greater accuracy than the chromogenic assay. Spike recovery was 113.8 % vs. 53.8 % for the turbidimetric and chromogenic assay respectively. Assay bias was higher in the chromogenic assay (−0.384EU/mL vs. 0.011EU/mL). The turbidimetric assay demonstrated greater precision compared to the chromogenic assay. Coefficient of variation ranged from 4.5 to 24.1 % for the turbidimetric assay and 25.8–26.5 % for the chromogenic assay. The study findings suggest that the kinetic turbidimetric LAL assay has greater accuracy and precision than the chromogenic assay and is the optimum LAL technique for endotoxin detection in haemodialysis patients, though these findings should be verified using LAL reagents from other sources.
Tài liệu tham khảo
Gonçalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AEM, Lima EG, et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006;21(10):2788–94.
Wong J, Vilar E and Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial. 2015;28(1):59–67.
Hauser AB, Stinghen AEM, Gonçalves SM, Bucharles S, Pecoits-Filho R. A gut feeling on endotoxemia: causes and consequences in chronic kidney disease. Nephron Clin Pract. 2011;118(2):c165–72.
Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease - what have we learned in 10 years. Semin Dial. 2010;23(5):498–509.
Williams K. Endotoxins, Pyrogens, LAL Testing and Depyrogenation. 3rd ed. New York: Informa Healthcare USA, Inc.; 2007.
Ronco C, Piccinni P, Kellum J. Rationale of extracorporeal removal of endotoxin in sepsis: theory, timing and technique. Contrib Nephrol. 2010;167:25–34.
Matsumoto N, Takahashi G, Kojika M, Suzuki Y. Interleukin-8 induces an elevation in the endotoxin activity assay (EAA) level: does the EAA truly measure the endotoxin level. J Infect Chemother. 2013;19:825–32.
Wong J, Jeraj H, Vilar E, Viljoen A, Farrington K, Jeraj J. Endotoxin detection in end-stage kidney disease. J Clin Pathol. 2015;68(1):73–8.
Bryans TD, Braithwaite C. Bacterial endotoxin testing: a report on the methods, background, data, and regulatory history of extraction recovery efficiency. Biomed Instrum Technol. 2004;38(1):73–8.
Fukui H, Matsumoto M, Bode C, Bode JC, Tsujita S, Tsujii T. Endotoxaemia in patients with liver cirrhosis and upper gastrointestinal bleeding: detection by the chromogenic assay with plasma tween 80 pretreatment. J Gastroenterol Hepatol. 1993;8(6):577–81.
Hurley J. Endotoxemia: methods of detection and clinical correlates. Clin Microbiol Rev. 1995;8(2):268–92.
Dawson M. Interference with the LAL test and how to address it. LAL Update. 2005;22(3)1-6. Available from http://www.acciusa.com/pdfs/newsletter/LAL%20Update%20Vol%2022_No3%20rev%20001.pdf.
Bacterial Endotoxins Test - Chapter 85. United States Pharmacopoiea 36 - National Formulary 31. 2013. p. 1–5.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.
Westgard JO, Hunt MR. Use and interpretation of common statistical tests in method-comparison studies. Clin Chem. 1973;19(1):49–57.
Richardson K, Novitsky TJ. Simple statistics for the LAL user - Standard deviation, repeatability, reproducibility and a clarification of the coefficient of variation. LAL Update. 2002;20(4):1–6.
Suzuki H, Honda H. Assessment of inflow of endotoxin and its fragments in patients on maintenance hemodialysis. Blood Purif. 2011;31:268–75.
Markum H. Endotoxin in patients with terminal renal failure undergoing dialysis with re-processing dialyser. Acta Med Indones. 2004;36:93–6.
Raj D, Carrero JJ, Shah V, Qureshi AR. Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients. Am J Kidney Dis. 2009;54:1072–80.
El-Koraie AF, Naga YS. Endotoxins and inflammation in hemodialysis patients. Hemodial Int. 2013;17:359–65.
Taniguchi T, Katsushima S, Lee K. Endotoxemia in patients on hemodialysis. Nephon. 1990;56:44–9.
Szeto C-C. Endotoxemia is associated with better clinical outcome in incident Chinese peritoneal dialysis patients: a prospective cohort study. Perit Dial Int. 2010;30:178–86.
Kwan BC-H, Chow K-M, Leung C-B. Circulating bacterial-derived DNA fragments as a marker of systemic inflammation in peritoneal dialysis. Nephrol Dial Transpl. 2013;28:2139–45.
McIntyre CW. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:133–41.
Szeto C-C, Kwan BC-H, Chow K-M, Lai K-B, Chung K-Y, Leung C-B, et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3(2):431–6.
Jefferies HJ, Crowley LE, Harrison LEA, Szeto C-C, Li PKT, Schiller B, et al. Circulating endotoxaemia and frequent haemodialysis schedules. Nephron Clin Pract. 2014;128(1–2):141–6.
Hurley JC, Tosolini FA, Louis WJ. Quantitative limulus lysate assay for endotoxin and the effect of plasma. J Clin Pathol. 1991;44(10):849–54.
Fields M. Testing blood samples for endotoxin. LAL Update. 2006;23(2):1–6.
Novitsky TJ. Limulus amebocyte lysate (LAL) detection of endotoxin in human blood. J Endotoxin Res. 1994;1(253–263):253.
Cohen J. The detection and interpretation of endotoxaemia. Intensive Care Med. 2000;26:S51–6.
Stumacher RJ, Kovnat MJ, McCabe WR. Limitations of the usefulness of the Limulus assay for endotoxin. N Engl J Med. 1973;288(24):1261–4.
Elin RJ, Robinson RA, Levine AS, Wolff SM. Lack of clinical usefulness of the limulus test in the diagnosis of endotoxemia. N Engl J Med. 1975;293(11):521–4.
Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 2007;45(11):3546–8.
Romaschin AD, Klein DJ, Marshall JC. Bench-to-bedside review: clinical experience with the endotoxin activity assay. Crit Care. 2012;16(6):248.
Terawaki H, Yokoyama K, Yamada Y, Maruyama Y, Iida R, Hanaoka K, et al. Low-grade endotoxemia contributes to chronic inflammation in hemodialysis patients: examination with a novel lipopolysaccharide detection method. Ther Apher Dial. 2010;14(5):477–82.
Shimizu T, Obata T, Sonoda H, Akabori H, Miyake T, Yamamoto H, et al. Diagnostic potential of endotoxin scattering photometry for sepsis and septic shock. Shock. 2013;40(6):504–11.
Shimizu T, Obata T, Sonoda H, Akabori H, Tabata T, Eguchi Y, et al. The ability of endotoxin adsorption during a longer duration of direct hemoperfusion with a Polymyxin B-immobilized fiber column in patients with septic shock. Transfus Apher Sci. 2013;49(3):499–503.
Dasgupta MK. Biofilms and infection in dialysis patients. Semin Dial. 2002;15(5):338–46.
Sturk A, Joop K, ten Cate JW, Thomas LL. Optimalization of a chromogenic assay for endotoxin in blood. Prog Clin Biol Res. 1985;189:117–37.
Peek SF, Borah S, Semrad S, McGuirk S. Plasma endotoxin concentration in horses: a methods study. Vet Clin Pathol. 2004;33(1):29–31.
Sharma R, von Haehling S, Rauchhaus M, Bolger AP, Genth-Zotz S, Doehner W, et al. Whole blood endotoxin responsiveness in patients with chronic heart failure: the importance of serum lipoproteins. Eur J Heart Fail. 2005;7(4):479–84.
Cooper JF, Weary ME, Jordan FT. The impact of non-endotoxin LAL-reactive materials on Limulus amebocyte lysate analyses. PDA J Pharm Sci Technol. 1997;51(1):2–6.
Roslansky PF, Novitsky TJ. Sensitivity of limulus amebocyte lysate (LAL) to LAL-reactive glucans. J Clin Microbiol. 1991;29(11):2477–83.