A comparative study between some bisection based partitions in 3D

Applied Numerical Mathematics - Tập 55 - Trang 357-367 - 2005
Miguel A. Padrón1, José P. Suárez2, Ángel Plaza3
1Department of Civil Engineering, University of Las Palmas de Gran Canaria, 35017, Spain
2Department of Cartography and Graphic Engineering, University of Las Palmas de Gran Canaria, 35017, Spain
3Department of Mathematics, University of Las Palmas de Gran Canaria, 35017, Spain

Tài liệu tham khảo

Bänsch, 1991, Local mesh refinement in 2 and 3 dimensions, IMPACT Com. Sci. Engrg., 3, 181, 10.1016/0899-8248(91)90006-G Bern, 1995, 47 Dey, 1992, On good triangulations in three dimensions, Internat. J. Comput. Geom. Appl., 2, 75, 10.1142/S0218195992000068 Dompierre, 1998, Benchmarks for 3D unstructured tetrahedral mesh optimization, 459 Kossaczký, 1994, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math., 55, 275, 10.1016/0377-0427(94)90034-5 Liu, 1994, On the shape of tetrahedra from bisection, Math. Comp., 63, 141, 10.1090/S0025-5718-1994-1240660-4 Liu, 1995, Quality local refinement of tetrahedral meshes based on bisection, SIAM J. Sci. Comput., 16, 1269, 10.1137/0916074 Maubach, 1995, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Statist. Comput., 16, 210, 10.1137/0916014 Mitchell, 1989, A comparison of adaptive refinement technique for elliptic problems, ACM Trans. Math. Software (15), 4, 326, 10.1145/76909.76912 Mitchell, 1992, Optimal multilevel iterative methods for adaptive grids, SIAM J. Sci. Statist. Comput., 13, 146, 10.1137/0913009 A. Mukherjee, An Adaptive Finite Element Code for Elliptic Boundary Value Problems in Three Dimensions with Applications in Numerical Relativity, PhD thesis, Penn. State University, University Park, PA 16802, 1996 Muthukrishnan, 1995, Simple algorithm for adaptive refinement of three-dimensional finite element tetrahedral meshes, AIAA J., 33, 928, 10.2514/3.12386 Parthasarathy, 1993, A comparison of tetrahedron quality meshes, Finite Elem. Anal. Des., 15, 225 Plaza, 2000, Refinement of simplicial grids based on the skeleton, Appl. Numer. Math., 2, 195, 10.1016/S0168-9274(99)00022-7 Plaza, 2000, A 3D refinement/derefinement combination to solve evolution problems, Appl. Numer. Math., 4, 285 Rivara, 1987, A grid generator based on 4-triangles conforming mesh refinement algorithms, Internat. J. Numer. Methods Engrg., 24, 1343, 10.1002/nme.1620240710 Rivara, 1992, A 3-d refinement algorithm suitable for adaptive and multi-grid techniques, J. Comput. Appl. Math., 8, 281